МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный университет архитектуры и строительства» (ПГУАС)

химия воды и микробиология

Методические указания к расчетно-графической работе для направления подготовки 08.03.01 «Строительство»

УДК [628.16+628.34]:579.6+543.3(075.8) ББК 38.761+28.4+28.072я73 X46

> Рекомендовано Редсоветом университета Рецензент – кандидат химических наук А.В. Нуштаева (ПГУАС)

Химия воды и микробиология: методические указания к рас-X46 четно-графической работе для направления подготовки 08.03.01 «Строительство» / Н.Г. Вилкова, А.А. Шумкина, П.А. Полубояринов. – Пенза: ПГУАС, 2016. – 8 с.

Содержатся рекомендации по выполнению расчетно-графической работы по дисциплине «Химия воды и микробиология».

Методические указания подготовлены на кафедре «Физика и химия» и предназначены для студентов 2-го курса направления 08.03.01«Строительство», изучающих дисциплину «Химия воды и микробиология» по программе бакалавриата.

- © Пензенский государственный университет архитектуры и строительства, 2016
- © Вилкова Н.Г., Шумкина А.А., Полубояринов П.А., 2016

ПРЕДИСЛОВИЕ

Методические указания разработаны для программы дисциплины «Химия воды и микробиология», составленной в соответствии с требованиями федерального государственного образовательного стандарта высшего образования для направления «Строительство» (квалификация – бакалавр).

Дисциплина «Химия воды и микробиология» изучается студентами 2-го курса и входит в базовую часть общепрофессионального модуля учебного цикла Б1.Б.2.1.

Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) «Химия воды и микробиология» (в соответствии с ФГОС ВО):

- знание научно-технической информации, отечественного и зарубежного опыта по профилю деятельности
- способность составлять отчеты по выполненным работам, участвовать во внедрении результатов исследований и практических разработок

В результате изучения дисциплины студент должен:

Знать: научно-техническую информацию, отечественный и зарубежный опыт по профилю деятельности.

Уметь: применять полученные знания в практической деятельности, составлять отчеты по выполненным работам, участвовать во внедрении результатов исследований и практических разработок

Владеть: основными знаниями, необходимыми для выполнения теоретического и экспериментального исследования, которые в дальнейшем помогут решать на современном уровне вопросы водоснабжения и водоотведения.

.Раздел 1. Особенности химического состава природных и сточных вод

Расчетно-графическая работа "Определение адсорбции изоамилового спирта на границе раздела вода-активированный уголь"

<u>Адсорбцией</u> называется изменение концентрации газообразного или растворенного вещества в поверхностном слое по сравнению с объемной фазой, отнесенное к единице площади поверхности. Адсорбцию выражают в моль/см², моль/м² или моль/г (для поверхности твердое тело-газ (жидкость)).

Газ или растворенное вещество, адсорбирующееся на поверхности раздела фаз, называют <u>адсорбатом</u> или <u>адсорбтивом</u>, а твердое тело, на поверхности которого происходит адсорбция, называют <u>адсорбентом</u>. Адсорбция газов, паров и растворенных веществ имеет огромное практическое значение при очистке газов, извлечения ценных примесей, в гетерогенном катализе, хроматографическом анализе смесей и в других процессах, происходящих на поверхности раздела фаз.

Адсорбция на поверхности раздела твердое тело-жидкость

В настоящее время нет удовлетворительных методов определения поверхностного натяжения на границе раздела твердое тело-газ (или жидкость), поэтому адсорбцию на твердых телах измеряют по разности между начальной концентрацией раствора и концентрацией, устанавливающейся при достижении адсорбционного равновесия. Такие измерения возможны только в тех случаях, когда адсорбция происходит на большой поверхности, так что изменения концентрации поддаются измерению. Так как величина поверхности адсорбентов точно не известна, то количество адсорбированного вещества относят не к единице поверхности, а к единице массы адсорбента (Γ).

Адсорбцию часто выражают уравнением Лангмюра. Часто более точным является эмпирическое уравнение Фрейндлиха:

$$\Gamma' = \beta \cdot C^{1/n},\tag{1}$$

где β и n – эмпирические константы;

C – равновесная концентрация, устанавливаемая после адсорбции.

Это уравнение хорошо согласуется с экспериментом только в области средних концентраций.

Уравнение (1) легко спрямляется в логарифмических координатах:

$$\lg \Gamma' = \lg \beta + \frac{1}{n} \lg C. \tag{2}$$

Определение констант уравнения Фрейндлиха дает возможность характеризовать количественно процесс адсорбции, а также сравнивать адсорбционную активность различных адсорбентов по отношению к растворенным веществам.

Величину адсорбции Γ' обычно вычисляют по уравнению:

$$\Gamma'_{\text{эксп}} = \frac{(C_0 - C)V}{m} \cdot 1000,$$
 (3)

где C_0 , C – начальная и равновесная концентрация адсорбтива в растворе, соответственно, моль/л;

V – объем раствора, л (0.025 л);

m – количество адсорбента, 1 г;

1000 – переводной коэффициент для получения т моль/кг.

Начальные концентрации растворов известны, а равновесные концентрации С определяются по изотерме поверхностного натяжения после адсорбции изоамилового спирта на активированном угле.

Метод расчета. Исходные данные для расчета

Всякая выпуклая поверхность по теории капиллярности обладает дополнительным молекулярным давлением $P_r = \frac{2\sigma}{r}$, которое необходимо преодолеть пузырьку при движении через капилляр (здесь r — радиус капилляра). Для двух жидкостей с поверхностным натяжением σ_0 и σ при определении давления с одним и тем же капиллярным давлением получается:

$$\sigma = \frac{r}{2}P_r = \frac{r}{2}\Delta P = kh$$

$$\sigma_0 = \frac{r}{2}P_{r_0} = \frac{r}{2}\Delta P_0 = kh_0$$
(4)

После деления первого уравнения на второе получается формула

$$\sigma = \sigma_0 \frac{h}{h_0},\tag{5}$$

где σ – поверхностное натяжение исследуемого раствора (в нашем случае это раствор изоамилового спирта);

 σ_0 – поверхностное натяжение воды, равное 72,73 дин/см при температуре 20°C;

h – разность высот жидкости в обоих коленах манометра при определении σ исследуемой жидкости;

 h_0 – разность высот жидкости в обоих коленах манометра для воды.

По этой формуле ведется расчет поверхностных натяжений всех исследуемых растворов.

В табл. 1 приведены исходные данные для проведения расчетов (выбирается один из предложенных вариантов).

Таблица 1 Исходные данные для расчетов

С	Вариант 1		Вариант 2		Вариант 3		Вариант 4		Вариант 5	
моль/л	h_1	h_2								
0,004	9,7	9,9	9,6	9,7	9,7	9,8	7,5	7,7	9,5	9,8
0,008	9,4	9,7	9,4	9,6	9,5	9,6	6,7	7,2	9,2	9,6
0,01	9,2	9,5	9,0	9,3	9,1	9,5	6,5	7,0	9,1	9,5
0,02	8,7	9,2	8,5	9,0	8,6	9,3	6,2	6,6	8,5	8,7
0,05	7,4	8,1	7,7	8,4	7,1	8,2	5,5	6,2	7,3	7,8
0,1	6,2	7,0	6,4	7,0	6,6	7,6	4,8	5,8	6,0	6,5
0,2	5,0	5,7	5,0	5,5	5,2	6,0	4,2	5,2	5,0	5,5

 h_1 и h_2 — разность высот жидкости в обоих коленах манометра при определении σ изоамилового спирта до адсорбции и после адсорбции на поверхности угля.

 h_0 – разность высот жидкости в обоих коленах манометра для воды (для вариантов, указанных в табл. 1, h_0 = 10;10; 9,9; 7,8; 9,9.

Определение величины адсорбции изоамилового спирта на поверхности угля

- 1. Построить изотерму поверхностного натяжения растворов изоамилового спирта до и после адсорбции (рис.1).
- 2. определить изменение концентрации спирта в исходном растворе графическим способом, как это показано на рис.1.

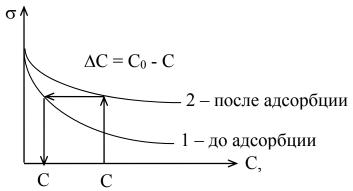


Рис.1. Изотермы поверхностного натяжения

- 3. Рассчитать величину адсорбции $\Gamma_{\text{эксп}}$ по формуле (3).
- 4. Построить зависимость $\lg\Gamma' = f(\lg C)$.
- 5. по экспериментальным данным, определить константы уравнения Фрейндлиха (β и $\frac{1}{n}$).

Вопросы

- 1. Что называется адсорбцией? Пояснить физический смысл величины Г.
- 2. В чем причина адсорбции?
- 3. Что называется поверхностно-активными веществами (ПАВ)?
- 4. В чем заключается сущность определения поверхностного натяжения ометодом максимального давления пузырьков?
- 5. Какая зависимость существует между поверхностным натяжением раствора и адсорбцией?
 - 6. Что такое предельная адсорбция?
- 7. Какими уравнениями описывается адсорбция на границах раздела жидкость-газ и твердое тело-жидкость?

Критерии оценки

Результаты оцениваются по четырехбалльной шкале с оценками: «неудовлетворительно»; «удовлетворительно»; «хорошо»; « отлично».

Дескриптор (результаты) компетенции	Показатель оценивания	Оценка	Критерий оценивания
	знание научно-тех- нической информа- ции, отечественного и зарубежного опыта по профилю	отлично	знает научно-техническую информацию, отечественный и зарубежный опыт по профилю деятельности; способен составлять отчеты по выполненным работам, участвовать во внедрении результатов исследований и практических разработок
Знает	деятельности способность составлять отчеты по вы-	хорошо	знает научно-техническую информацию, отечественный и зарубежный опыт по профилю деятельности; способен составлять отчеты по выполненным работам
	полненным работам, участвовать во внед-	удовлетвори- тельно	знает некоторую научно-техническую информацию
	рении результатов исследований и практических разработок >	неудовлетвори-	не знает научно-техническую информацию, отечественный и зарубежный опыт по профилю деятельности; не способен составлять отчеты по выполненным работам
Умеет	применять получен-	отлично	применяет полученные знания в практической деятельности. составляет отчеты по выполненным работам, внедряет результаты исследований и практических разработок
	ные знания в практической деятельности. составлять от-	хорошо	применяет полученные знания в практической деятельности. составляет отчеты по выполненным работам
	четы по выполнен- ным работам, внед-	удовлетвори-	применяет некоторые из полученных знаний в
	рять результаты исследований и практических разработок	тельно неудовлетвори- тельно	практической деятельности не применяет полученные знания в практической деятельности, не составляет отчеты по выполненным работам, не внедряет результаты исследований и практических разработок
	основными знаниями, необходимыми для выполнения теоретического и экспериментального ис-	ончисто	владеет основными знаниями, необходимыми для выполнения теоретического и экспериментального исследования, которые в дальнейшем помогут решать на современном уровне вопросы водоснабжения и водоотведения
Владеет	следования, которые в дальнейшем помо- гут решать на совре- менном уровне во- просы водоснабже-	хорошо	владеет некоторыми знаниями, необходимыми для выполнения теоретического и экспериментального исследования, которые в дальнейшем помогут решать на современном уровне вопросы водоснабжения и водоотведения
	ния и водоотведения	удовлетвори- тельно	плохо владеет знаниями, необходимыми для выполнения теоретического и экспериментального исследования
		неудовлетвори- тельно	не владеет основными знаниями, необходимыми для выполнения теоретического и экспериментального исследования, которые в дальнейшем помогут решать на современном уровне вопросы водоснабжения и водоотведения

Учебное издание

Вилкова Наталья Георгиевна Шумкина Анна Александровна Полубояринов Павел Аркадьевич

ХИМИЯ ВОДЫ И МИКРОБИОЛОГИЯ

Методические указания к расчетно-графической работе для направления подготовки 08.03.01 «Строительство»

В авторской редакции Верстка Н.В. Кучина

Подписано в печать 05.10.2016. Формат 60х84/16.

Бумага офисная «Снегурочка». Печать на ризографе. Усл.печ.л. 0,465. Уч.-изд.л. 0,5. Тираж 80 экз.

Заказ №611.

Издательство ПГУАС. 440028, г. Пенза, ул. Германа Титова, 28