МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный университет архитектуры и строительства»

Н.А. Орлова, К.О. Чичиров

ВЕНТИЛЯЦИЯ ЗДАНИЙ ОБЩЕСТВЕННОГО НАЗНАЧЕНИЯ. КУРСОВОЕ И ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ

Под редакцией кандидата технических наук, доцента Горшкова В.И.

Рекомендовано Редсоветом университета в качестве учебного пособия для студентов, обучающихся по направлению подготовки 270800 «Строительство» по профилю «Теплогазоснабжение и вентиляция» (степень) «бакалавр»

УДК 697.9:725.1(075.8) ББК 38.762.2:38.712я73 О–66

Рецензенты: декан факультета Инженерных сис-

тем и техносферной безопасности, доктор технических наук, профессор

Н.В. Мензелинцева (ВГАСУ);

кандидат технических наук, доцент

С.В. Баканова (ПГУАС)

Орлова Н.А.

О-66 Вентиляция зданий общественного назначения. Курсовое и дипломное проектирование: учеб. пособие / Н.А. Орлова, К.О. Чичиров; под ред. канд. техн. наук, доц. В.И. Горшкова. – Пенза: ПГУАС, 2013. – 160 с.

Рассмотрены основные принципы организации воздухообмена в помещениях общественных зданий, приведены выбор и расчет систем воздухораспределения, аэродинамический расчет воздуховодов, а также данные для подбора оборудования вентиляционных систем. Работа выполнена в соответствии с Федеральным государственным образовательным стандартом высшего профессионального образования по направлению подготовки 270800 «Строительство» (квалификация (степень) «бакалавр»), утвержденным приказом Министерства образования и науки Российской Федерации от 22 декабря 2009 года, №780.

Пособие подготовлено на кафедре «Теплогазоснабжение и вентиляция» и предназначено для студентов дневного и заочного отделений при изучении теоретических курсов и выполнении курсового и дипломного проекта, а также для специалистов, занимающихся проектированием и эксплуатацией систем вентиляции современных зданий.

[©] Пензенский государственный университет архитектуры и строительства, 2013

[©] Орлова Н.А., Чичиров К.О., 2013

ПРЕДИСЛОВИЕ

Обеспечение правильного воздухообмена в помещениях зданий общественного назначения является важным вопросом как для инженеровстроителей профиля «Теплогазоснабжение и вентиляция», работающих на рынке инженерных услуг, так и для инженеров, занимающихся эксплуатацией данного вида зданий. Для обеспечения эффективной работы при курсовом и дипломном проектировании в пособии сосредоточено такое количество информации, которое необходимо при проектировании систем вентиляции зданий общественного назначения, для полноценного осознания студентами профессиональной ориентации.

Понимая, что полностью охватить вопросы специфики проектирования систем вентиляции всех видов общественных зданий в одном учебном пособии практически невозможно, авторы все же попытались осветить эти вопросы как можно полнее.

Первая глава учебного пособия посвящена основным принципам организации воздухообмена в общественных зданиях. Во второй главе – выбор и расчет систем воздухораспределения. Третья глава посвящена аэродинамическому расчету воздуховодов. В четвертой главе рассматривается оборудование вентиляционных систем.

Авторы выражают глубокую благодарность рецензентам пособия: декану факультета Инженерных систем и техносферной безопасности ФГБОУ ВПО «Волгоградский государственный архитектурно-строительный университет», доктору технических наук, профессору Надежде Васильевне Мензелинцевой и доценту кафедры «Теплогазоснабжение и вентиляция» Пензенского государственного университета архитектуры и строительства, кандидату технических наук Светлане Викторовне Бакановой.

Учебное пособие написано для студентов строительных вузов, обучающихся по направлению подготовки 270800 «Строительство» квалификации (степень) «бакалавр» по профилю «Теплогазоснабжение и вентиляция», а также инженеров и специалистов, занимающихся проектированием систем вентиляции общественных зданий.

ВВЕДЕНИЕ

Вентиляция (от лат. ventilatio проветривание) — это регулируемый воздухообмен в помещениях, создающий благоприятное для человека состояние воздушной среды (состава воздуха, температуры, влажности и пр.), а также совокупность технических средств, обеспечивающих такой воздухообмен.

Поскольку население промышленно развитых стран мира большую часть времени (около 80 %) проводит внутри зданий, вентиляция должна обеспечивать правильный состав воздуха, соответствующий требованиям строительных норм и правил (СНиП). Человек в процессе жизнедеятельности расходует кислород и выделяет углекислый газ. Здоровый воздух для дыхания должен содержать не менее 21 % кислорода, уменьшение же концентрации кислорода в воздухе может вызывать ощущение духоты, недомогание, головную боль. Постоянная нехватка кислорода снижает работоспособность, отрицательно сказывается на здоровье человека, ускоряет процесс старения.

Кроме того, в закрытом помещении обычно присутствуют источники загрязнения воздуха — строительные материалы, бытовая химия, газовые плиты, технологическое оборудование, электроника и прочее. Чтобы не допускать высокой концентрации вредных веществ в воздухе и существенного понижения содержания кислорода, воздух в помещении должен полностью обновляться.

Современные системы вентиляции не только осуществляют воздухообмен в помещении, они способны очищать подаваемый воздух, увлажнять его, нагревать или охлаждать до нужной температуры, т.е. создавать в помещении наиболее комфортные для человека условия. Однако основные принципы организации воздухообмена, выбор систем воздухораспределения для общественных зданий различного назначения различны. Применение вентиляционного оборудования в общественных зданиях и их помещениях также имеет свою особую специфику.

Основная задача настоящего учебного пособия заключается в том, чтобы вооружить будущих инженеров знаниями проблем взаимосвязи работы систем вентиляции с микроклиматом помещений, основ проектного дела, специфики применения вентоборудования. Только тогда будет возможным создание в общественном здании современных эффективных и экономичных систем вентиляции, обеспечивающих состав воздуха, соответствующий нормативному.

1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ВОЗДУХООБМЕНА В ОБЩЕСТВЕННЫХ ЗДАНИЯХ

При выполнении курсового и дипломного проекта должно быть обращено внимание на организацию воздухообмена, так как потребный объем воздуха, а следовательно, экономические показатели системы в решающей степени зависят от выбранных схем вентиляции помещений, способа раздачи воздуха и типа воздухораспределительных устройств.

Системы вентиляции с естественным побуждением проектируют в случаях, когда нормируемые параметры воздушной среды в помещениях могут быть обеспечены такими системами.

Смешанные системы вентиляции проектируют во всех случаях, когда экономически целесообразно сочетание вентиляции с естественным и механическим побуждением. При этом устройство в одном помещении вытяжной вентиляции с механическим и естественным побуждением может осуществляться только при условии полной компенсации удаляемого воздуха организованным механическим и естественным притоком.

1.1. Здания административных учреждений, проектных и научно-исследовательских организаций

В зданиях административных учреждений и проектных организаций применяется механическая приточно-вытяжная вентиляция [1, 2, 3].

Для конференц-залов, помещений общественного питания и помещений киноаппаратного комплекса следует предусматривать самостоятельные системы приточной вентиляции с механическим побуждением. Для остальных помещений проектируется единая система приточной вентиляции.

Подавать приточный воздух необходимо в конференц-залы, обеденные залы, кухни, вестибюли, а также в другие помещения вспомогательного и обслуживающего назначения.

Удаление воздуха самостоятельными вытяжными системами вентиляции с механическим побуждением предусматривается для следующих групп помещений: санитарных узлов и курительных; проектных залов и служебных помещений, кабинетов площадью 35 м² и более; холлов и коридоров; помещений предприятий общественного питания; аккумуляторных; кинопроекционных, а также от вытяжных шкафов и укрытий. Для конференц-залов и залов совещаний рекомендуется проектировать системы вытяжной вентиляции с естественным побуждением. При этом необходимо обеспечивать меры по предотвращению опрокидывания тяги.

Удалять воздух из служебных помещений и кабинетов площадью менее 35 m^2 следует за счет перетекания воздуха в коридор, а из служебных комнат и кабинетов площадью 35 m^2 и более — непосредственно из помещений.

Воздухообмен в помещениях проектных залов, служебных помещениях и кабинетах следует, как правило, организовывать по схеме «сверхувверх», а в конференц-залах «сверху-вниз-вверх»; допускаются и другие схемы воздухообмена при соответствующем обосновании.

Вытяжную вентиляцию с естественным побуждением допускается предусматривать в помещениях зданий высотой один — три этажа с количеством сотрудников менее 300 чел. Рециркуляция воздуха, если это позволяется, применяется в помещениях, для которых воздухообмен определяется расчетом из условий ассимиляции тепловлагоизбытков. Централизованная рециркуляция воздуха для служебных помещений и кабинетов не допускается. В проектных залах, служебных помещениях и кабинетах, конференц-залах и залах совещаний, в зданиях проектных и конструкторских организаций следует обеспечивать оптимальные условия воздушной среды.

1.2. Общественные здания

1.2.1. Детские ясли-сады

В помещениях детских яслей-садов проектируется приточно-вытяжная вентиляция с естественным побуждением [3, 4, 5].

Для помещений групповых и игрально-столовых во всех климатических районах, кроме подрайонов IA, IБ, IГ, предусматривают периодическое естественное сквозное или угловое проветривание. В IV климатическом районе периодическое сквозное или угловое проветривание предусматривают также в спальнях-верандах, кухнях, стиральных-разборочных, сушильнях-гладильнях и туалетных.

Удалять воздух из помещений спален, имеющих сквозное или угловое проветривание, допускается через групповые помещения. Для медицинских помещений следует предусматривать самостоятельные вытяжные каналы. Вытяжные воздуховоды, идущие из пищеблока, не должны проходить через групповые и спальные помещения. Для периодической интенсификации воздухообмена на вытяжном канале в туалетных комнатах без оконных проемов в наружных ограждениях следует устанавливать по одному осевому малогабаритному вентилятору.

Для подогрева наружного воздуха, подаваемого в помещения стиральной и гладильной, могут применяться приточные шкафы с использованием в качестве нагревательных элементов калориферов, конвекторов или радиаторов.

Для детских дошкольных учреждений применение асбестоцементных воздуховодов в системе вентиляции не допускается.

1.2.2. Общеобразовательные учреждения

В учебных помещениях проектируется приточно-вытяжная вентиляция [1, 2, 3, 6, 7, 8]. При проектировании приточной вентиляции с механическим побуждением или децентрализованным притоком в учебных помещениях следует предусматривать естественную вытяжную вентиляцию. Удаление воздуха из учебных помещений общеобразовательных школ следует предусматривать через рекреационные помещения и санитарные узлы, а также за счет эксфильтрации через неплотности окон. В школах с числом учащихся до 200 допускается устройство вентиляции без организованного механического притока.

При проектировании в школьных зданиях воздушного отопления, совмещенного с вентиляцией, следует предусматривать автоматическое управление системами, в том числе поддержание в рабочее время в помещениях расчетной температуры и относительной влажности в пределах 30–60 %, а также обеспечение в неучебное время температуры воздуха не ниже 15 °C. Рециркуляция воздуха в системах воздушного отопления учебных помещений допускается только в нерабочее время. В общеобразовательных школах, школах-интернатах и интернатах при школах температура воздуха, поддерживаемая в рабочее время в системе воздушного отопления, не должна превышать 40 °C.

При воздушном отоплении вытяжные каналы из учебных помещений проектировать не следует. Устройство вытяжных каналов можно не предусматривать, если в помещениях учительской, библиотеки, кабинетов администрации и в комнатах отдыха имеются наружные окна с фрамугами или форточками.

Индивидуальные системы вентиляции предусматриваются для следующих помещений: классных комнат, учебных кабинетов, аудиторий (при отсутствии воздушного отопления); лабораторий без выделения вредных веществ (неприятных запахов), залов курсового и дипломного проектирования, читальных залов – более 30 мест; спортивных залов; актовых залов, учебных театров, концертных залов; киноаппаратных; столовых; медицин-

ских помещений; санитарных узлов. Индивидуальная система приточной вентиляции должна предусматриваться для столовых.

Из лабораторий физики и химии предусматривают механическую вытяжку через вытяжные шкафы. Для ученических и демонстрационных лабораторных шкафов проектируют отдельную вытяжную систему. Расчетную скорость движения воздуха в рабочем отверстии при полностью открытой шторке принимают соответственно 0,5 и 0,7 м/с.

Объем воздуха, удаляемого от вытяжных шкафов, необходимо определять в зависимости от требуемой скорости движения воздуха в рабочем проеме шкафа согласно табл. 1.1.

Таблица 1.1 Скорость движения воздуха в расчетном проеме шкафа в зависимости от предельно допустимых концентраций вредных веществ в рабочей зоне

Предельно допустимые концентра-	Скорость движения воздуха
ции вредных веществ	в расчетном проеме шкафа, м/с
в рабочей зоне, мг/м ³	
Более 10	0,5
От 10 до 0,1	0,8–1
Менее 0,1	1–1,5

При работах, связанных с веществами I и II классов опасности, скорость воздуха в рабочем проеме шкафа следует принимать не ниже 1,2 м/с.

Коэффициент одновременности работы вытяжных шкафов лабораторий следует принимать равным 1.

Удаление воздуха от вытяжных шкафов допускается предусматривать общей системой из одного или нескольких помещений при условии обеспечения требований по взрывопожаробезопасности.

Для нескольких аудиторий, размещаемых в отдельном здании или в блоке, при определении производительности вентиляционных систем и подборе вентиляционного оборудования следует учитывать коэффициенты загрузки аудиторий K_3 и одновременности их работы K_0 .

Значение коэффициента K_3 следует принимать:

для аудиторий о	от 50 до 100 мест	1
(от 100 до 200 мест	0,85
	от 200 до 250 мест	0,8
(св. 250 мест	0,75

Значение коэффициента K_0 следует принимать:

Подачу приточного воздуха следует предусматривать непосредственно в помещения. Подачу приточного воздуха в проекционную допускается предусматривать от приточной системы обслуживаемого зала, при условии подключения воздуховода, идущего в проекционную, к приточной системе зала, ниже уровня пола проекционной.

1.2.3. Лечебно-оздоровительные учреждения

В зданиях лечебно-профилактических учреждений, как правило, предусматривается приточно-вытяжная вентиляция с механическим побуждением [1, 2, 3, 9].

Допускается естественная вытяжная вентиляция (для отдельно стоящих зданий высотой не более 3-х этажей): в приемных отделениях, палатных корпусах, отделениях водолечения, инфекционных корпусах и отделениях. При этом приточная вентиляция предусматривается с механическим побуждением и подачей воздуха в коридор.

Допускается естественная вытяжная вентиляция без централизованной подачи приточного воздуха (для отдельно-стоящих зданий высотой не более 3-х этажей): в зданиях скорой и неотложной медицинской помощи, амбулаториях, фельдшерско-акушерских пунктах, хозрасчетных аптеках, помещениях для хранения рентгенограмм (до 500 кг) на негорючей основе, легковоспламеняющихся жидкостей, дезинфекционных средств, текущего запаса кислот и щелочей, конференц-залах и спальных корпусах санаториев.

Кондиционирование воздуха является обязательным в операционных, наркозных, предродовых, родовых, послеоперационных палатах, реанимационных залах, палатах интенсивной терапии, в однокоечных и двухкоечных палатах для больных с ожогами, в палатах для грудных, новорожденных, недоношенных, травмированных детей, в залах барокамер. Воздух, подаваемый в эти помещения, надлежит дополнительно очищать в бактериологических фильтрах, устанавливаемых после вентилятора. В этом случае не допускается установка масляных фильтров в качестве I ступени очистки воздуха.

В малых операционных стационаров и поликлиник, а также в палатах, которые полностью оборудуются кюветами, кондиционирование воздуха предусматривать не следует.

В палатах отделений больниц, проектируемых для строительства в сельских населенных пунктах, увлажнение воздуха в приточных вентиляционных установках допускается не предусматривать.

В операционных, наркозных, послеоперационных палатах, родовых, реанимационных залах и палатах интенсивной терапии относительная влажность воздуха принимается в пределах 55–60 %, а скорость движения воздуха не должна превышать 0,15 м/с. Относительная влажность воздуха в зимнее время в палатах иного назначения рекомендуется принимать в пределах 30–50 %.

Для остальных помещений лечебно-профилактических учреждений относительная влажность воздуха принимается в соответствии с работой [1].

Самостоятельные системы приточно-вытяжной вентиляции, а также системы кондиционирования воздуха для помещений, указанных выше, проектируют следующим образом: для операционных блоков (отдельно для асептических и септических отделений), реанимационных залов и палат интенсивной терапии (отдельно для поступающих в больницы с улицы и из отделений больниц), родовых (отдельно для физиологического и обсервационного отделений), палат новорожденных, недоношенных и травмированных детей каждого отделения (отдельно для физиологического и обсервационного отделений), рентгеновских отделений, лабораторий грязелечения, водолечения, сероводородных ванн, радоновых ванн, лабораторий приготовления радона, санитарных узлов, холодильных камер, хозрасчетных аптек. Объединение нескольких помещений одной вентиляционной системой возможно только при одинаковом режиме в них, допустимости сообщения помещений между собой и исключении пребывания в них инфекционных больных. В каждое помещение для лечебных процедур приточный воздух следует подавать непосредственно в верхнюю зону помещения. В стерильные помещения (операционные, родовые и др.) воздух подается ламинарными или слаботурбулентными струями. В помещениях с кратностью воздухообмена по приточному воздуху 1,5 и более в час необходимо подавать воздух непосредственно в помещение. В остальных случаях допускается подача воздуха из коридоров через неплотности дверных притворов.

Наружный воздух, подаваемый системами приточной вентиляции, надлежит очищать в фильтрах. Рециркуляция воздуха не допускается.

Приточный воздух, как правило, обрабатывают в центральных приточных камерах (кондиционерах). Вентиляционные приточные и вытяжные камеры размещают таким образом, чтобы была исключена передача шума в помещения с длительным пребыванием больных и в кабинеты врачей.

Воздуховоды систем приточной вентиляции должны иметь внутреннюю поверхность, исключающую вынос в помещение частиц материала воздуховода или защитного покрытия, которые могут вызывать заболевания, связанные с их вдыханием. Внутреннее покрытие должно быть несорбирующим. Воздуховоды в строительных конструкциях, как правило, не применяются. Воздуховоды систем приточной вентиляции (кондиционирования воздуха) после бактериологических фильтров предусматриваются из нержавеющей стали.

В отделениях операционных, предназначенных для мелких операций (например, в поликлинике), допустимо применение индивидуальных приточных установок с приточным шкафом, располагаемым в смежном помещении. Для очистки в этом случае может применяться ватный фильтр.

Воздух из операционных, наркозных и реанимационных удаляется, как правило, из двух зон 40 % — из верхней зоны (на 10 см от потолка), 60 % — из нижней зоны (на 60 см от пола) с учетом выделения в эти помещения газов и паров, которые могут образовывать взрывоопасные смеси. При проектировании системы вентиляции и оборудования должны быть предусмотрены меры по обеспечению взрывобезопасности.

В кабинетах электро-, свето- и теплолечения для подачи и удаления воздуха рекомендуется использовать верхнюю зону помещения. Приток воздуха в эти помещения, предусматриваемый от отдельной приточной камеры, должен быть рассчитан на поглощение теплоизбытков.

Для грязелечебных кабинетов, бассейнов регенерации и помещений для нагрева грязи воздух рекомендуется подавать в верхнюю зону, а вытяжку организовывать из верхней и нижней зон.

Для рентгенодиагностических кабинетов с аппаратами закрытого типа проектируют приточно-вытяжную вентиляцию с удалением воздуха из верхней зоны на расстоянии 0,6 м от потолка, а из нижней зоны на расстоянии 0,5 м от пола. В фотолаборатории воздух удаляют из верхней зоны. Кабинеты рентгенотерапии рекомендуется вентилировать так же, как и рентгенодиагностические кабинеты, но с повышенным воздухообменом.

В зданиях аптек отдельные вытяжные системы рекомендуется предусматривать для помещений приемно-рецептурной, ассистентской, коктория, мойки стерилизационной, санитарного узла и др.

1.2.4. Культурно-зрелищные учреждения

В помещениях культурно-зрелищных учреждений проектируют приточно-вытяжную вентиляцию с механическим побуждением [1, 3, 10, 11, 24].

Системы приточно-вытяжной вентиляции следует предусматривать раздельными для помещений зрительного и клубного комплексов, помещений обслуживания сцены (эстрады), а также административно-хозяйственных помещений.

В кинотеатрах с непрерывным кинопоказом, в общедосуговых клубах и клубах общей вместимостью до 375 чел. указанное разделение систем допускается не предусматривать.

Самостоятельные приточные системы вентиляции следует предусматривать для помещений: зрительных залов; вестибюля, фойе, кулуаров, музея; тиристорных; светопроекционных, звукоаппаратных, аппаратных звукорежиссера, светоаппаратных, кабин для диктора и переводчиков; артистических уборных, репетиционных залов, комнат для занятий артистов и музыкантов, творческого персонала и художественного руководства, помещений административно-хозяйственных, для работы кружков, технической связи и радиовещания, производственных мастерских.

Самостоятельные вытяжные системы следует предусматривать для помещений: курительных; санитарных узлов; трюма; подсобных при буфетах; тиристорной; светопроекционной, звукоаппаратной, аппаратной звукорежиссера и светоаппаратной, кабин диктора и переводчиков; холодильной станции; мастерских; складов; аккумуляторных.

Вентиляцию курительных и санитарных узлов допускается объединять в одну систему. При проектировании общедосуговых клубов допускается проектировать только естественную вытяжку из всех помещений, кроме зрительного зала, кинопроекционной и аккумуляторной. В проекционных следует предусматривать отдельные вытяжные и приточные вентиляционные системы. К вытяжным системам допускается присоединять вытяжные каналы от стойки (шкафа) оконечных усилителей, перемоточных и кабины переводчика.

В многозальных кинотеатрах с общей вместимостью залов до 800 мест следует предусматривать обслуживание одной приточной системой вентиляции нескольких залов, при этом необходимо для каждого зала проектировать по расчету установку зонального подогревателя воздуха. Подогрев воздуха в основных калориферах системы следует предусматривать до +6 °C.

При проектировании зрительных залов кинотеатров следует предусматривать возможность ночного проветривания в теплый период года. Для этих целей в нижней зоне залов проектируют проемы, оборудованные неподвижными решетками и утепленными дверцами. Рассчитывать площадь живого сечения проема следует исходя из количества подаваемого воздуха, равного полутора-двухкратному воздухообмену в помещении зала

в 1 ч с учетом гравитационного давления. Удалять воздух в этом случае рекомендуется через шахту основной системы вентиляции. В вытяжных шахтах для этой цели устанавливают утепленные клапаны с дистанционным управлением. Для отвода конденсата под шахтами устанавливают поддоны. Необходимо также предусматривать мероприятия, исключающие возможность неорганизованного поступления наружного воздуха в залы через вытяжные шахты.

В зрительном зале клуба или театра с глубинной колосниковой сценой количество удаляемого воздуха должно составлять 90 % приточного (включая рециркуляцию) для обеспечения 10 % подпора в зале; через сцену следует удалять не более 17 % общего объема удаляемого из зала воздуха.

В помещениях доготовочных, моечных буфета, санитарных узлов, курительных и мастерских следует предусматривать вытяжную вентиляцию с механическим побуждением, в служебно-хозяйственных помещениях допускается предусматривать вентиляцию с естественным побуждением.

Система вентиляции с механическим побуждением в аккумуляторных и кислотных, не имеющих естественного освещения, должна быть сблокирована с зарядными устройствами таким образом, чтобы при прекращении работы системы вентиляции отключались зарядные устройства. В аккумуляторных и кислотных вытяжные отверстия следует предусматривать под потолком и на высоте 0,3 м от пола. Оборудование системы вытяжной вентиляции, обслуживающей кислотную аккумуляторную, должно предусматривать взрывобезопасное исполнение и защиту от коррозии. В аккумуляторной со щелочными аккумуляторами вытяжные отверстия располагают только под потолком. В этом случае можно организовать естественную вентиляцию через отдельный вентиляционный отсос.

Помещение для размещения вентиляционного оборудования, оборудования систем кондиционирования воздуха, компрессорных, холодильных установок не следует располагать непосредственно за ограждающими конструкциями зрительного зала.

Не допускается предусматривать устройство вентиляционных каналов в стенах, разделяющих зрительный зал и проекционную, а также разделяющих зрительные залы многозальных зданий; прокладку воздуховодов через помещения зала, проекционной и перемоточной, если эти воздуховоды предназначаются для других помещений.

В зрительных залах кинотеатров вместимостью до 800 мест подачу воздуха следует осуществлять, как правило, компактными струями с максимальной скоростью, регламентируемой допустимым уровнем шума в залах и нормируемой подвижностью воздуха в рабочей зоне.

1.2.5. Библиотеки, архивы и книгохранилища

В хранилищах редких книг и рукописей, а также в хранилищах библиотек с объемом фонда 1 млн единиц хранения и более и в хранилищах архивов I группы следует предусматривать кондиционирование воздуха [1, 3].

В читальных, лекционных залах и помещениях хранилищ научных библиотек с фондом 200 тыс. единиц хранения и более допускается применять воздушное отопление, совмещенное с приточной вентиляцией или с системой кондиционирования воздуха.

В помещениях хранилищ, архивов вместимостью более 0,3 млн единиц хранения следует применять, как правило, воздушное отопление, совмещенное с приточной вентиляцией или с системой кондиционирования воздуха. В остальных помещениях зданий архивов следует предусматривать водяное отопление.

Для помещений хранилищ, читальных и лекционных залов в зданиях библиотек с фондом 200 тыс. единиц хранения и более следует предусматривать раздельные приточные системы вентиляции.

В массовых библиотеках с фондом до 50 тыс. единиц хранения при размещении зоны читательских мест совместно с зоной книжных фондов и обслуживания читателей в одном помещении и в архивах вместимостью до 0,3 млн единиц хранений допускается устройство естественной вентиляции из расчета однократного обмена.

В хранилищах, лекционных и читальных залах библиотек с фондом 200 тыс. единиц хранения и более, а также в хранилищах архивов следует предусматривать рециркуляцию воздуха. Объем наружного воздуха надлежит определять расчетом. В помещениях хранилищ он не должен превышать 10 % общего объема подаваемого воздуха. В читальных и лекционных залах объем наружного воздуха должен быть не менее 20 м³/чел.

Для лекционных залов, читальных залов и хранилищ библиотек допускается устройство вытяжной вентиляции с естественным побуждением.

Для хранилищ библиотек должна быть предусмотрена очистка от пыли наружного и рециркуляционного воздуха до предельно допустимой концентрации ее в помещении, определенной технологическим заданием.

1.2.6. Предприятия бытового обслуживания населения

В парикмахерских помещения для маникюра, педикюра и косметических услуг, а также помещения кладовых допускается проектировать без организованного притока воздуха. Предприятия бытового обслуживания, [1, 3, 12, 24], вместимостью до 5 рабочих мест (общей площадью до 150 кв.м), встроенные в жилые дома, разрешается проектировать без организованного притока воздуха, но при наличии механической вытяжки.

Вентиляцию помещений следует проектировать, как правило, с естественным побуждением. Механическую вытяжную вентиляцию следует предусматривать во всех складских помещениях, предназначенных для хранения химических веществ и в помещениях с вредными выделениями и веществами, имеющими резкий запах. В помещениях кладовых площадью более 55 кв.м следует предусматривать вытяжную противодымную вентиляцию.

Допускается подсоединение систем вытяжной вентиляции кладовых к общей системе механической вентиляции подсобных помещений, при условии установки огнезадерживающих клапанов в соответствии с работой [8].

В помещениях предприятий бытового обслуживания (за исключением помещений, в которых возможно выделение вредных веществ в воздух рабочей зоны) допускается применять рециркуляцию воздуха, при этом наружный воздух следует подавать в объеме не менее 20 м³/час на одного человека, из расчетного числа людей, находящихся в данных помещениях, с обеспечением нормируемых параметров микроклимата.

В мини-химчистке, мини-прачечной приточную вентиляцию следует проектировать с учетом обеспечения перетекания воздуха в направлении из «чистой зоны» в «грязную зону».

В мини-химчистке удаление воздуха должно предусматриваться в непосредственной близости от машин химчистки из верхней и нижней зон помещений.

Системы вентиляции предприятий бытового обслуживания встроенных, встроенно-пристроенных в жилые дома и зданиях иного назначения следует проектировать раздельными с системами вентиляций этих зданий.

Системы отопления и вентиляции, вентиляционное оборудование не должны создавать шума, вибрации выше допустимых для жилых зданий, независимо от их размещения в жилых или общественных зданиях.

1.2.7. Предприятия розничной торговли

В продовольственных и непродовольственных магазинах торговой площадью до 250 м² допускается проектировать вентиляцию с естественным побуждением. В помещениях магазинов торговой площадью 400 м² и более, оборудованных вентиляцией с механическим побуждением, объем вытяжки должен быть полностью компенсирован притоком [2, 13, 14, 24].

Естественную вентиляцию следует предусматривать в торговых залах рынков площадью до 600 м². В остальных случаях следует предусматривать приточно-вытяжную вентиляцию с механическим побуждением и двукратным воздухообменом.

В случаях, когда продажа продовольственных и непродовольственных товаров предусмотрена в отдельных торговых залах, система вентиляции должна быть раздельной.

В помещениях кладовых следует, как правило, предусматривать естественную вытяжную систему вентиляций с раздельными каналами. Общеобменную систему вытяжной вентиляции с механическим побуждением из кладовых и подсобных помещений допускается проектировать общими при условии установки в воздуховодах огнезадерживающих клапанов в местах пересечения стен и перегородок этих помещений.

Система вентиляций магазинов, расположенных в зданиях иного назначения, должна быть отдельной от системы вентиляций этих зданий.

В торговых залах магазинов, кроме торговых залов с химическими, синтетическими или иными пахучими веществами и горючими жидкостями допускается применять рециркуляцию воздуха, при этом наружный воздух должен подаваться в объеме не менее 20 м³/час на одного человека.

Тамбуры входов для покупателей в магазинах торговой площадью 150 м^2 и более (для рынков 600 м^2 и более) при расчетной температуре наружного воздуха для холодного периода года (расчетные параметры Б) минус $15 \, ^{\circ}$ С и ниже, должны быть оборудованы воздушно-тепловыми завесами.

В продовольственных магазинах торговой площадью 1500 м² и выше и в непродовольственных магазинах торговой площадью 2500 м² и выше при расчетной температуре наружного воздуха минус 15 °C и ниже (параметры Б) ворота в разгрузочных помещениях следует оборудовать воздушно-тепловыми завесами.

1.2.8. Спортивные сооружения

Обеспечение параметров внутреннего воздуха в спортивных залах [1, 3, 15, 24] с местами для более 800 зрителей и на крытых катках с местами для зрителей во всех климатических районах, а также в спортивных залах с местами для 800 и менее зрителей в IV климатическом районе рекомендуется путем устройства систем кондиционирования воздуха. Выбор системы определяется технико-экономическим расчетом.

Подвижность воздуха в зонах нахождения занимающихся принимается, не более:

- 0.3 м/c в спортивных залах для борьбы, настольного тенниса и на крытых катках;
 - 0,5 м/с в остальных спортивных залах.

Указанную подвижность воздуха в зонах нахождения занимающихся в зальных помещениях рекомендуется обеспечивать, применяя, как правило, сосредоточенную подачу приточного воздуха.

Относительную влажность воздуха в спортивных залах рекомендуется принимать в пределах 30–60 %.

Самостоятельные системы приточной и вытяжной вентиляции предусматриваются для спортивных залов и залов крытых катков; душевых, раздевален для занимающихся и массажных; служебных помещений для административного и инженерно-технического персонала, инструкторскотренерского состава, бытовых помещений для рабочих; технических помещений (бойлерных и др.).

Удаление воздуха из спортивных залов и зальных помещений крытых катков, как правило, предусматривается вытяжными системами с естественным побуждением.

Спортивные залы без мест для зрителей, имеющие объем, при котором на каждого единовременно занимающегося приходится не менее 80 m^2 объема зала, допускается проектировать с естественной приточно-вытяжной вентиляцией с обеспечением однократного воздухообмена в 1 ч.

Компенсация вытяжки из помещений душевых осуществляется за счет дополнительного притока воздуха из помещений раздевален, куда предусматривается организованная подача воздуха в пятикратном объеме душевых, но не менее двукратного объема раздевален. Удаление воздуха из раздевален предусматривается в двукратном объеме через помещения душевых. В случаях, когда количество воздуха, удаляемого из душевых (с учетом помещений раздевален), превышает 10-кратный воздухообмен, разница объемов воздуха удаляется непосредственно из помещения раздевален.

В спортивных залах, где предусматриваются естественная приточновытяжная вентиляция и снижение температуры в нерабочее время, систему отопления рекомендуется устраивать из двух раздельных групп нагревательных приборов: основной, рассчитанной на постоянное поддержание температуры внутреннего воздуха +5 °C, и дополнительной, обеспечивающей доведение внутренней температуры до расчетной.

Удаление воздуха из спортивных залов и зальных помещений крытых катков с искусственным льдом, предусматриваемое вытяжными системами с естественным побуждением, рекомендуется осуществлять, используя обычные вентиляционные шахты, устанавливаемые непосредственно на кровле зала. Вытяжные шахты оборудуются утепленными клапанами с электроподогревом и дистанционным управлением, а также поддонами для сбора и удаления конденсата. К клапанам и поддонам обеспечивается удобный доступ обслуживающего персонала. Размеры внутреннего сечения шахт определяются по расчету с учетом гравитационного и ветрового напора и давления, создаваемого приточной вентиляцией.

Неорганизованную подачу наружного воздуха в спортивные залы при проектировании естественной приточно-вытяжной вентиляции рекомендуется осуществлять, используя в качестве приточных устройств открывающиеся фрамуги в нижней и верхней частях витражей.

В случае если раздевальни для занимающихся (с душевыми при них) объединены с другими помещениями общей системой приточной вентиляции с расчетной температурой приточного воздуха ниже +25 °C, то для них предусматривается зональный подогреватель. Если же температура приточного воздуха в системе равна +25 °C (т.е. расчетной для раздевален), то на воздуховоде в раздевальне зональный подогреватель не предусматривается, а для остальных помещений, требующих более низкой расчетной температуры воздуха в холодный период года, расчетную величину теплопотерь на отопление этих помещений уменьшают на величину перегрева приточного воздуха.

Систему вытяжной вентиляции из санитарных узлов и курительных допускается объединять с системой вытяжной вентиляции из душевых.

В зальных помещениях, выполненных в клеедеревянных конструкциях, при необходимости обеспечения требуемой относительной влажности в зоне этих конструкций (не менее 45 %) рекомендуется устройство увлажнения воздуха в системах приточной общеобменной вентиляции. В отдельных случаях при отсутствии приточной вентиляции допускается использование местных увлажнителей.

В спортивных залах с местами для более 800 зрителей и крытых катках с местами для зрителей рекомендуется предусматривать самостоятельные системы воздухораспределения для зоны размещения мест для зрителей и для зоны нахождения занимающихся (соревнующихся).

Помещения, предназначаемые для оборудования в них приточных систем и установок кондиционирования воздуха, рекомендуется размещать в подвальных или цокольных этажах (на грунте) так, чтобы протяженность трасс воздуховодов была минимальной. В исключительных случаях, когда не представляется возможным разместить эти помещения в нижних этажах, допускается их размещение вне пределов основного здания (в том числе в отдельном или пристроенном объеме) или в его верхних этажах. В первом случае предусматриваются переходы, соединяющие технические помещения с основным объемом здания (с прокладкой в них каналов), во втором — предусматриваются мероприятия по вибро-, звуко- и гидроизоляции, а также устройство эксплуатационных проходов и проемов для демонтажа и замены оборудования. Оптимальный вариант выбирают путем сопоставления технико-экономических показателей.

В помещениях, предназначаемых для оборудования приточных систем, допускается устройство вводов теплоносителя, бойлерных и водяных насосных.

Контрольные вопросы

- 1. Каковы основные принципы организации воздухообмена в зданиях административных учреждений, проектных и научно-исследовательских организаций?
- 2. Каковы основные принципы организации воздухообмена в детских яслях-садах?
- 3. Каковы основные принципы организации воздухообмена в общеобразовательных учреждениях?
- 4. Каковы основные принципы организации воздухообмена в лечебно-оздоровительных учреждениях?
- 5. Каковы основные принципы организации воздухообмена в культурно-зрелищных учреждениях?
- 6. Каковы основные принципы организации воздухообмена в библиотеках, архивах и книгохранилищах?
- 7. Каковы основные принципы организации воздухообмена на предприятиях бытового обслуживания населения?
- 8. Каковы основные принципы организации воздухообмена на предприятиях розничной торговли?
- 9. Каковы основные принципы организации воздухообмена в спортивных сооружениях?
- 10. Какие принципы организации воздухообмена для общественных зданий различного назначения схожи?

2. ВЫБОР И РАСЧЕТ СИСТЕМ ВОЗДУХОРАСПРЕДЕЛЕНИЯ

2.1. Основные сведения о приточных струях

При выборе схемы организации воздухообмена и способе распределения воздуха следует учитывать конкретные особенности помещения, его назначение, конструктивные и объемно-планировочные решения, размещение и размеры источников теплоты, влаги, вредных газов, а также величину поступлений вредностей от этих источников, уровень требований к поддержанию расчетных параметров микроклимата [16, 17, 18].

Подача воздуха в помещение производится приточными турбулентными струями. Этот способ подачи воздуха позволяет уменьшить протяженность приточных воздуховодов и не загромождать ими объем помещения. Воздух в приточных струях обладает большей скоростью, нежели допустимая скорость в рабочей зоне. Но на входе струи в рабочую зону подвижность должна быть равной или меньшей предельных значений скорости, определяемых нормами в пределах рабочей зоны [11]. Параметры приточной струи за пределами рабочей зоны обычно не нормируются.

Современные схемы и средства воздухораспределения, методы расчета позволяют выбирать такие решения, которые обеспечивают нормируемые параметры воздушной среды в рабочей зоне помещения разного назначения и конструкции.

Назначение приточных струй — распределить свежий и специально подготовленный воздух в объеме вентилируемого помещения или его обслуживаемой (рабочей) зоны.

Приточные струи могут быть:

Компактными, вытекающими из круглых, квадратных и прямоугольных отверстий, в том числе из решеток с соотношением сторон до 1:10.

Плоскими – из прямоугольных отверстий с соотношением сторон более 1:10.

Веерными — вытекающими из диффузоров или воздухораспределителей, имеющих на пути движения струи диск, поворачивающий струю на 90° и распространяющий поток воздуха во всех направлениях.

По способу распространения струи могут быть:

Свободными — распространяющимися до скорости по оси струи до $0,2\,\mathrm{m/c}$ без изменения своей формы.

Стесненными – имеющими на своем пути преграду из различных предметов или конструкций, или других струй.

Основное влияние на характер и интенсивность движения воздуха в вентилируемом помещении (схему циркуляции воздуха) оказывают приточные струи, формируемые воздухораспределителями.

Распространение получили решетки различных геометрических форм и размеров с подвижными (регулируемыми) и неподвижными (нерегулируе-

мыми) жалюзи. Они изготавливаются из разнообразных материалов: металла (сталь и алюминий), гипса, пластмассы и др., бывают решетки с декоративным оформлением и без него; различных расцветок; с направлением потока приточного воздуха в одну, две, три и четыре стороны. В зависимости от конструкции решетки можно создавать струи различных типов. Далее будут рассмотрены конструкции воздухораспределителей, получившие наибольшее распространение, такие как АПР, АПН, АМН, АМР, ДПУ и другие.

Некоторые конструкции решеток являются универсальными и применяются как в приточных, так и в вытяжных системах.

Устанавливаются решетки чаще всего выше обслуживаемой зоны в проемах стен в местах прокладки вентиляционных каналов. Они могут также размещаться у пола и на уровне подшивного потолка для напольной раздачи и удаления воздуха.

В процессе расчета воздухораспределителей находятся:

- 1) фактическая скорость и температура на входе струи в рабочую зону, их соответствие нормативным данным;
- 2) проверяется степень равномерности распределения параметров воздуха в рабочей зоне;
- 3) проверяется соответствие геометрических размеров объема помещения, обслуживаемого одной приточной струей, геометрическим размерам модели, путем обобщения результатов испытаний на которой определялись расчетные формулы.

2.2. Рекомендуемые схемы воздухораспределения

Схема распределения воздуха в помещениях общественных зданий должна приниматься на основании расчета возможных способов воздухораспределения [17] с учетом объемно-планировочного и конструктивного решений и технико-экономических показателей.

1. В зрительные и спортивные залы высотой более 5–6 м рекомендуется подавать воздух наклонными компактными или плоскими струями, направленными на экран (сцену) или спортивную площадку из воздухораспределителей, которые расположены выше обслуживаемой зоны.

Допускается подавать воздух компактными или плоскими струями из воздухораспределителей, установленных в боковых стенах.

2. В помещениях или отдельных зонах высотой менее 5–6 м, имеющих подшивной потолок (торговые залы, балконы зрительных залов, трибуны спортивных залов), воздух рекомендуется подавать веерными струями, настилающимися на гладкий потолок.

При наличии выступающих конструкций на потолке (балки, ригели, ребра), а также светильников с большими тепловыделениями воздух рекомендуется подавать коническими струями из воздухораспределителей, устанавливаемых на высоте 3–6 м.

- 3. В помещениях общественных зданий высотой 5–12 м воздух допускается подавать вертикальными компактными струями из воздухораспределителей с устройствами для отклонения приточной струи в пределах $\pm 30^{\circ}$ от вертикали.
- 4. Для индивидуального регулирования микроклимата в отдельных помещениях (классы общеобразовательных школ, палаты больниц, номера гостиниц) воздух рекомендуется подавать через доводчиков (см. прил. 1, п. 3), которые позволяют автоматически изменять температуру и вертикальный угол выпуска приточного воздуха в зависимости от температуры в помещении.

2.3. Методика расчета и подбора воздухораспределителей

2.3.1. Подача воздуха настилающейся компактной приточной струей

При таком способе подачи воздуха необходимо, чтобы настилающаяся струя не оторвалась от потока раньше, чем она достигнет противоположной стены. Если настилающаяся струя достигла противоположной стены, то далее она опустится вдоль нее в рабочую или обслуживаемую зону. Это позволяет увеличить длину траектории струи от места выпуска до точки, где она пересечет границу обслуживаемой зоны. Расчетная схема подачи воздуха настилающей приточной компактной струей приведена на рис. 2.1. Рекомендуемое направление приточных компактных струй — вдоль короткой стороны помещения, что позволяет обеспечить безотрывное течение при меньших скоростях выпуска воздуха из воздухораспределителя υ_0 и, следовательно, меньших скоростях на оси струи υ_x и меньшем уровне шума.

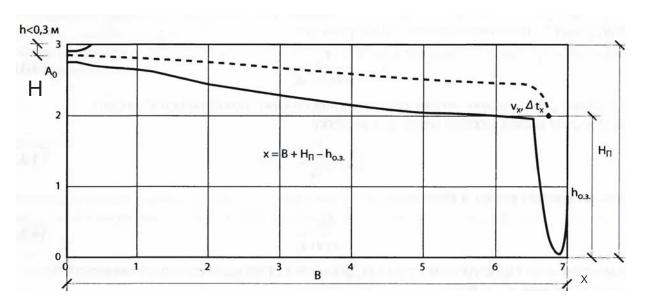


Рис. 2.1. Расчетная схема подачи воздуха настилающейся приточной компактной струей ($x_{\text{отр}} > B$)

Тип воздухораспределителя	Регулирование	m	n
AMIL AMD AMILIC AMDIC	$\alpha_1=0^{\circ}$	8,4	5,1
AMH, AMP, AMH-K, AMP-K	$\alpha_1=30^{\circ}$	6,2	3,7
	$\alpha_1 = \alpha_2 = 0^{\circ}$	8,4	5,1
АДН, АДР, АДН-К, АДР-К	$\alpha_1 = \alpha_2 = 30^\circ$	5,3	3,2

Последовательность расчета

- 1. По табл. 2.1 выбирают тип воздухораспределителя, обеспечивающий формирование компактной настилающейся струи, и выписывают аэродинамическую m и тепловую n характеристики приточной струи.
- 2. Определяют допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$, м/с, по формуле

$$v_x^{\text{доп}} = K \cdot v_{\text{p.3}}, \tag{2.1}$$

- где K коэффициент перехода от нормируемой подвижности воздуха к максимальной скорости в струе, принимаемый по работе [1], (табл. 2.2);
 - $\upsilon_{p,3}$ нормируемое значение скорости воздуха в струе на границе обслуживаемой зоны (подвижность воздуха), м/с.

Таблица 2.2 Коэффициент перехода от нормируемой скорости движения воздуха к максимальной скорости воздуха в струе [3]

		Категория работ		
Метеороло-			средней	
гические	Размещение людей	легкая	тяжести	
условия		Іа, Іб	IIa, IIб,	
			тяжелая III	
	В зоне прямого воздействия при-			
	точной струи воздуха в пределах			
	участка:			
Поттисти	а) начального	1	1	
Допустимые	б) основного	1,4	1,8	
	Вне зоны прямого воздействия при-	1,6	2	
	точной струи воздуха		2	
	В зоне обратного потока	1,4	1,8	

Таблица 2.3 Допустимые отклонения температуры в приточной струе

от нормируемой температуры воздуха в обслуживаемой или рабочей зоне [1]

	Допустимые отклонения температуры				
		при восполнении		при ассимиляции	
		недостат	ков тепла	избытков тепла	
Метеороло-			размещен	ие людей	
гические		в зоне	вне зоны	в зоне	вне зоны
условия	помещение	прямого	прямого	прямого	прямого
условия		воздейст-	воздейст-	воздейст-	воздейст-
		вия при-	вия при-	вия при-	вия при-
		точной	точной	точной	точной
		струи	струи	струи	струи
	Жилые, общественные				
	и административно-бы-				
Допустимые	товые				
	Δt_I	3	3,5	_	_
	Δt_2	_	_	1,5	2

3. Определяют допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$, °C, по формуле

$$t_x^{\text{доп}} = t_{\text{в}} - \Delta t , \qquad (2.2)$$

где $t_{\rm B}$ — температура воздуха в помещении, °С, (по заданию);

- Δt допустимое отклонение температуры в приточной струе от нормируемой температуры в рабочей зоне, °C, принимаемое по табл. 2.3.
- 4. Определяют требуемую из условия безотрывного течения струи на ее протяженности $x_{\text{отр}} = B$ величину ее геометрической характеристики $H_{\text{отр}}$ по формуле

$$H_{\rm Tp} = \frac{B}{0.5}, \,\mathrm{M},$$
 (2.3)

где B — ширина помещения, м.

5. Определяют длину траектории струи от места ее выпуска до пересечения оси струи с границей обслуживаемой зоны, м, по формуле

$$x = B + (H_{\pi} - h_{p.3}), \tag{2.4}$$

где H_{Π} – высота помещения, м;

 $h_{\rm p.3}$ — высота рабочей зоны, м.

6. Определяют требуемую площадь живого сечения вентиляционной решетки, m^2 , из условия обеспечения нормируемого значения скорости воздуха в струе на границе обслуживаемой зоны по формуле

$$A_{\rm o} = (5,45 \frac{v_{\rm x}^{\rm JO\Pi} x}{H_{\rm Tp}})^4 \frac{1}{(n\Delta t_{\rm o})^2},\tag{2.5}$$

где n- температурный коэффициент струи, принимаемый по табл. 2.1;

 $\Delta t_{\rm o}$ — рабочая разность температур, $\Delta t_{\rm o} = t_{\rm B} - t_{\rm mp}$, °C;

- $v_x^{\text{доп}}$ нормируемое значение скорости воздуха в струе на границе обслуживаемой зоны (подвижность воздуха), м/с.
- 7. По площади живого сечения подбирают вентиляционную решетку соответствующего типоразмера (прил. 1) и выписывают площадь живого сечения A_0 , M^2 .
 - 8. Вычисляют скорость воздуха в живом сечении, м/с, по формуле

$$v_{o} = \frac{v_{x}^{\text{Mon}} x}{m\sqrt{A_{o}}}.$$
 (2.6)

9. Определяют количество вентиляционных решеток, шт., по формуле

$$N = \frac{L_{\rm p}}{3600v_{\rm o}A_{\rm o}},\tag{2.7}$$

где $L_{\rm p}$ — объем воздуха в помещении, м 3 /ч.

- 10. Размещают решетки равномерно вдоль длинной стороны помещения и уточняют:
 - фактический расход воздуха через одну решетку, м³/ч, по формуле

$$L_{\rm Bp} = \frac{L_{\rm p}}{N},\tag{2.8}$$

– скорость воздуха в живом сечении, м/с, по формуле

$$v_{o} = \frac{L_{\Pi}}{3600A_{o}}, \qquad (2.9)$$

- геометрическую характеристику струи, м, по формуле

$$H = \frac{mv_{o}\sqrt{(273 + t_{B}^{4}\sqrt{A_{o}})}}{\sqrt{ng\Delta t_{o}}} = 5,45\frac{mv_{o}\sqrt[4]{A_{o}}}{\sqrt{n\Delta t_{o}}},$$
 (2.10)

– фактическую протяженность безотрывного течения, м, по формуле

$$x_{\text{orp}} = 0.5H$$
. (2.11)

Если $x_{\text{отр}} > B$, то определяют:

- скорость воздуха, м/с, по формуле

$$\upsilon_{x.\text{max}} = \frac{m\upsilon_{o}\sqrt{A_{o}}}{x}k_{cT}k_{B3}k_{H3}; \qquad (2.12)$$

– разность температуры воздуха в помещении и на оси струи, °C, по формуле

$$\Delta t_{x.\text{max}} = \frac{n\Delta t_{o}\sqrt{A_{o}}}{x}k_{cT}k_{B3}k_{H3}, \qquad (2.13)$$

где $k_{\text{из}}$ – коэффициент неизотермичности ($k_{\text{из}}$ = 1);

 $k_{\text{вз}}$ — коэффициент взаимодействия, ($k_{\text{вз}}$ = 1);

 $k_{\rm cr}$ — коэффициент стесненности струй ($k_{\rm cr}$ =0,8).

Полученные значения сравнивают с нормируемыми значениями.

Пример 2.1

Дано:

Размер помещения 18.6 = 108 м, высота $h_{\text{пом}} = 4$ м, $h_{\text{р.3}} = 1,5$ м. Воздухообмен постоянный круглогодично и составляет $L_{\text{p}} = 1500$ м³/ч , $t_{\text{в}} = 1$ °C. Допустимая, расчетная подвижность воздуха в рабочей зоне 0,2 м/с.

Oпределить: типоразмер решеток и параметры $\upsilon_{x,\max}$, $\Delta t_{x,\max}$.

Порядок расчета

- 1. По табл. 2.1 принимаем воздухораспределитель АМН, обеспечивающий формирование компактной настилающейся приточной струи с характеристиками: m = 6,2; n = 3,7.
- 2. Определяем допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$ по формуле (2.1)

$$v_r^{\text{доп}} = 1, 4 \cdot 0, 2 = 0, 28 \text{ m/c}.$$

3. Определяем допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$ по формуле (2.2)

$$t_r^{\text{доп}} = 18 - 2 = 16$$
 °C.

4. Определяем требуемую из условия безотрывного течения струи на ее протяженности $x_{\text{отр}} = B$ величину ее геометрической характеристики $H_{\text{отр}}$ по формуле (2.3)

$$H_{\rm rp} = \frac{6}{0.5} = 12 \,\mathrm{M}$$
.

5. Определяем длину траектории струи от места ее выпуска до пересечения оси струи с границей обслуживаемой зоны по формуле (2.4)

$$x = 6 + (4 - 1,5) = 8,5$$
 M.

6. Определяем требуемую площадь живого сечения вентиляционной решетки из условия обеспечения нормируемого значения скорости воздуха в струе на границе обслуживаемой зоны по формуле (2.5)

$$A_0 = (5,45 \frac{0,28 \cdot 8,5}{12})^4 \frac{1}{(3,7 \cdot 2)^2} = 0,0246 \text{ m}^2.$$

- 7. По прил. 1 принимаем решетку AMH200×150 с A_0 = 0,027 м².
- 8. Вычисляем скорость воздуха в живом сечении решетки по формуле (2.6)

$$v_o = \frac{0.28 \cdot 8.5}{6.2\sqrt{0.027}} = 2.3 \text{ m/c}.$$

9. Определяем количество вентиляционных решеток по формуле (2.7)

$$N = \frac{1500}{3600 \cdot 2.3 \cdot 0.027} = 6,7 \approx 7 \text{ m}.$$

- 10. Размещаем решетки равномерно вдоль длинной стороны помещения и уточняем:
 - фактический расход воздуха через одну решетку по формуле (2.8)

$$L_{\rm Bp} = \frac{1500}{7} = 214,3 \,\mathrm{M}^3/\mathrm{H} \approx 215 \,\mathrm{M}^3/\mathrm{H};$$

- скорость воздуха в живом сечении по формуле (2.9)

$$v_o = \frac{215}{3600 \cdot 0,027} = 2,2 \text{ M/c};$$

- геометрическую характеристику струи по формуле (2.10)

$$H = 5,45 \frac{6,2 \cdot 2,2\sqrt[4]{0,027}}{\sqrt{3,7 \cdot 2}} = 11,1 \text{ m/c};$$

- фактическую протяженность безотрывного течения по формуле (2.11)

$$x_{\text{orp}} = 0.5 \cdot 11, 1 = 5.54 < B = 6 \text{ M}.$$

Так как протяженность безотрывного течения меньше одного метра, воздухораспределитель можно признать пригодным для применения и последующего расчета.

Далее определяем:

– максимальную скорость воздуха по формуле (2.13)

$$\upsilon_{x.\text{max}} = \frac{6, 2 \cdot 2, 2\sqrt{0,027}}{8,5} 0, 8 \cdot 1 \cdot 1 = 0, 21 \text{ m/c} \le \upsilon_{x}^{\text{доп}} = 0, 28 \text{ m/c};$$

 – максимальную разность температуры воздуха в помещении и на оси струи по формуле (2.13)

$$\Delta t_{x.\text{max}} = \frac{3,7 \cdot 2,2\sqrt{0,027}}{8,5} 0,8 \cdot 1 \cdot 1 = 0,13 \text{ °C} \le \Delta t_x^{\text{доп}} = 2 \text{ °C}.$$

Условия выполняются.

Окончательно принимаем воздухораспределители AMH200×150 в количестве 7 шт.

2.3.2. Подача воздуха сверху вниз наклонными струями

Расчетная схема подачи воздуха не настилающейся приточной компактной струей приведена на рис. 2.2.

Условие для ненастилания плоских струй $h_{\rm Bp} = (0,35...0,65)H_{\rm ID}$, но следует учитывать способность струй налипать на ближайшее ограждение. Избежать этого в данном случае нежелательного явления можно выбором места входа струи в рабочую зону, которое должно быть равноудаленным от ограждений (точка x).

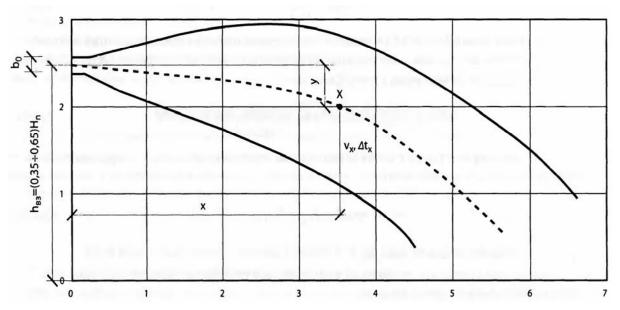


Рис. 2.2. Расчетная схема подачи воздуха ненастилающейся приточной компактной струей

Таблица 2.4 Рекомендуемые воздухораспределители

Тип воздухораспределителя	Регулирование	m	n
	$\alpha_1=30^{\circ}$	4,4	3,7
AMH, AMP, AMH-K, AMP-K	α_1 =45°	4,1	3,4
	$\alpha_1=60^{\circ}$	3,9	3,3
АДН, АДР, АДН-К, АДР-К	$\alpha_1 = 0^{\circ} \alpha_2 = 30^{\circ}$	6	5,1
	$\alpha_1 = \alpha_2 = 30^{\circ}$	3,8	3,2
	$\alpha_1 = \alpha_2 = 45^{\circ}$	3,6	3
	$\alpha_1 = \alpha_2 = 60^{\circ}$	3,1	2,5

Последовательность расчета

- 1. По табл. 2.4 принимают тип воздухораспределителя и выписывают аэродинамическую m и тепловую n характеристики приточной струи.
- 2. Определяют допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$, м/с, по формуле (2.1).
- 3. Определяют допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$, °C, по формуле (2.2).
- 4. Определяют длину траектории струи от места ее выпуска до пересечения оси струи с границей обслуживаемой зоны, м, по формуле

$$x_1 = \frac{(0,35...0,65)h_{\text{II}} - h_{\text{p3}}}{\sin(0,6\alpha_1)},$$
(2.14)

где $h_{\rm p3}$ — высота рабочей зоны, м;

α – характеристика воздухораспределителя (табл. 2.4);

 $h_{\rm Bp}-$ высота установки воздухораспределителя, м, определяется по формуле

$$h_{\rm Bp} = (0,35...0,65)h_{\rm II};$$
 (2.15);

здесь $h_{\rm n}$ — высота помещения, м.

5. Определяют расстояние по горизонтали от места ее выпуска до пересечения оси струи с границей обслуживаемой зоны x, м, по формуле

$$x = x_1 \cdot \cos(0.6\alpha_1). \tag{2.16}$$

6. Определяют требуемое значение геометрической характеристики струи, обеспечивающей попадание ее в точку x по формуле

$$H_{\rm Tp} = \sqrt[3]{0.16 \frac{x^5}{(h_{\rm Bp} - h_{\rm p3})^2}},$$
 (2.17)

где $h_{\rm Bp}$ — высота помещения, м.

7. Определяют требуемую площадь живого сечения воздухораспределителя, M^2 , по формуле

$$A_{\rm o} = (5.45 \frac{v_{\rm x}^{\rm MOII} x}{H_{\rm TD}})^4 \frac{1}{(n\Delta t_{\rm o})^2},$$
 (2.18)

где n — температурный коэффициент струи, принимаемый по табл. 2.4;

 $\Delta t_{\rm o}$ — рабочая разность температур, $\Delta t_{\rm o} = t_{\rm B} - t_{\rm np}$, °C.

8. Вычисляют скорость воздуха в живом сечении решеток, м/с, по формуле

$$v_{o} = \frac{v_{x}^{\text{доп}} x}{m\sqrt{A_{o}}}.$$
(2.19)

- 9. По площади живого сечения подбирают воздухораспределитель соответствующего типоразмера (прил. 1) и выписывают:
 - площадь живого сечения одной решетки A_0 , M^2 ;
- расход воздуха, приходящийся на один воздухораспределитель, $L_{\rm o}$, ${\rm m}^3/{\rm q}$.

При выборе воздухораспределителя уровень звуковой мощности не должен превышать 35 дБ.

10. Определяют количество вентиляционных решеток, шт., по формуле

$$N = \frac{L_{\rm p}}{L_{\rm o}},\tag{2.20}$$

где $L_{\rm p}$ — воздухообмен в помещении, м³/ч.

- 11. По табл. 2.5 определяют коэффициент стеснения $k_{\rm cr}$
- 12. Коэффициент неизотермичности $k_{\rm \scriptscriptstyle H3}$ при наклонной подаче приточного определяют по формуле

$$k_{\text{M3}} = \cos(0, 6\alpha_1) \sqrt{\frac{1 + \cos(2\alpha_1)}{2} + \left[\sin(0, 6\alpha_1) - \left(\frac{x}{H_{\text{Tp}} \cdot \cos(0, 6\alpha_1)}\right)^2\right]^2}, \quad (2.21)$$

Таблица 2.5 Значения коэффициента стеснения $k_{\rm cr}$

$\frac{A_{\rm o}}{a \cdot h_{\scriptscriptstyle \Pi}}$	$\frac{x}{m\sqrt{a\cdot h_{_{\Pi}}}}$					
• • • • • • • • • • • • • • • • • • •	0,1	0,2	0,3	0,4	0,5	0,6
<0,003	1	1	1	1	1	1
0,003	1	1	0,9	0,85	0,8	0,75
0,005	1	0,9	0,8	0,75	0,7	0,65
0,010	1	0,9	0,7	0,6	0,5	0,4
0,050	1	0,8	0,5	0,4	0,3	0,3

где a — длина помещения, м.

- 13. Коэффициент взаимодействия принимают равным $k_{\text{вз}} = 1$.
- 14. Далее определяют максимальные параметры воздуха на основном участке:
 - максимальную скорость воздуха по формуле

$$v_{x.\text{max}} = \frac{mv_o \sqrt{A_o}}{x} k_{cT} k_{B3} k_{u3}, \text{ m/c};$$
 (2.22)

 – максимальную разность температуры воздуха в помещении и на оси струи по формуле

$$\Delta t_{x.\text{max}} = \frac{n\Delta t_{\text{o}}\sqrt{A_{\text{o}}}}{x} \cdot \frac{k_{\text{\tiny H3}}}{k_{\text{\tiny CT}}k_{\text{\tiny B3}}}, \, ^{\circ}\text{C}.$$
 (2.23)

Полученные значения сравнивают с нормируемыми значениями.

Пример 2.2

Дано: Размер помещения $a \cdot b = 18 \cdot 6 = 108$ м, высота $h_{\rm n} = 5$ м, $h_{\rm p.3} = 2$ м. Воздухообмен постоянный круглогодично и составляет $L_{\rm p} = 1500$ м³/ч , $t_{\rm B} = 18$ °C, $t_{\rm np} = 16$ °C. Допустимая, расчетная подвижность воздуха в рабочей зоне 0.2 м/с.

Определить: типоразмер решеток и их количество.

По архитектурно-планировочным решениям была принята схема подачи воздуха сверху вниз наклонными струями с высоты $h_{\rm BP} = 0.65 \cdot h_{\rm II} = 0.65 \cdot 5 = 3.3$ м.

1. По табл. 2.4 принимаем воздухораспределитель АМН-К ($\alpha_1 = 45^\circ$; m = 4,1; n = 3,4).

2. Определяем допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$ по формуле (2.1)

$$v_x^{\text{доп}} = 1, 4 \cdot 0, 2 = 0, 28 \text{ M/c}.$$

3. Определяем допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$ по формуле (2.2)

$$t_x^{\text{доп}} = 18 - 2 = 16$$
 °C.

4. Определяем длину струи от истечения до места входа в обслуживаемую зону по формуле (2.14)

$$x_1 = \frac{3.3 - 2}{\sin(45^\circ \cdot 0.6)} = 2.9 \text{ M}.$$

5. Определяем расстояние по горизонтали от места ее выпуска до пересечения оси струи с границей обслуживаемой зоны x по формуле (2.16)

$$x = 2.9 \cdot \cos(0.6 \cdot 45) = 2.6 \text{ M}.$$

6. Определяем требуемое значение геометрической характеристики струи, обеспечивающей попадание ее в точку x по формуле (2.17)

$$H_{\rm rp} = \sqrt[3]{0.16 \frac{2.9^5}{1.3^2}} = 4.8 \,\mathrm{M}.$$

7. Определяем требуемую площадь живого сечения вентиляционной решетки по формуле (2.18)

$$A_{o} = \left(5,45\frac{0,28\cdot2,9}{4,8}\right)^{4} \frac{1}{(3,4\cdot2)^{2}} = 0,015 \text{ m}^{2}.$$

8. Вычисляем скорость воздуха в живом сечении решеток по формуле (2.19)

$$v_o = \frac{0.28 \cdot 4.8}{4.1\sqrt{0.015}} = 1.6 \text{ m/c}.$$

- 9. По прил. 1 принимаем решетку АМН-К300×100 (при L=35 дБ(A)) и выписываем:
 - площадь живого сечения одной решетки $A_0 = 0.022 \text{ м}^2$;
- расход воздуха, приходящийся на один воздухораспределитель, $L_{\rm o} = 280~{\rm m}^3/{\rm y}$.

10. Определяем количество вентиляционных решеток по формуле (2.7)

$$N = \frac{1500}{280} = 5,4 \approx 6 \text{ m} \text{ T}.$$

11. Далее определяем:

- коэффициент стеснения по табл. 2.5 $k_{\rm cr}$ = 1 при следующих условиях

$$\frac{A_{o}}{a \cdot h_{\Pi}} = \frac{0.022}{18 \cdot 5} = 0.0002 < 0.003; \quad \frac{x_{1}}{m\sqrt{a \cdot h_{\Pi}}} = \frac{2.9}{4.1\sqrt{18 \cdot 5}} = 0.1;$$

- коэффициент неизотермичности по формуле (2.21)

$$k_{\text{\tiny H3}} = \cos(0, 6 \cdot 45) \sqrt{\frac{1 + \cos(2 \cdot 45)}{2} + \left[\sin(0, 6 \cdot 45) - \left(\frac{2, 6}{4, 8 \cdot \cos(0, 6 \cdot 45)} \right)^{2} \right]^{2}} = 0, 63;$$

- коэффициент взаимодействия принимаем $k_{\text{вз}} = 1$.
- 12. Определяем параметры воздуха на основном участке:
- максимальную скорость воздуха по формуле (2.22)

$$\upsilon_{x.\text{max}} = \frac{4.1 \cdot 1.6 \sqrt{0.022}}{2.9} 1 \cdot 1 \cdot 0.63 = 0.2 \text{ m/c} \le \upsilon_x^{\text{доп}} = 0.28 \text{ m/c};$$

 – максимальную разность температуры воздуха в помещении и на оси струи по формуле (2.23)

$$\Delta t_{x.\text{max}} = \frac{3.4 \cdot 2\sqrt{0.022}}{2.9} \cdot \frac{0.63}{1 \cdot 1} = 0.2 \le \Delta t = 2 \text{ °C}.$$

Условия выполняются.

Окончательно принимаем воздухораспределители АМН-К 300×100 в количестве 6 шт.

2.3.3. Подача воздуха веерной струей

Воздухораспределители (диффузоры), размещаемые на потолке, формируют веерную струю, которая при подаче воздуха настилается на потолок.

Потолок должен быть разбит на квадратные или прямоугольные ячейки, исходя из условия обеспечения необходимых геометрических соотношений (отношение длинной стороны ячейки к короткой не должно превышать 1,5). В центре каждой из ячеек размещается воздухораспределитель. Расчетная схема подачи воздуха настилающейся приточной веерной струей приведена на рис. 2.3.

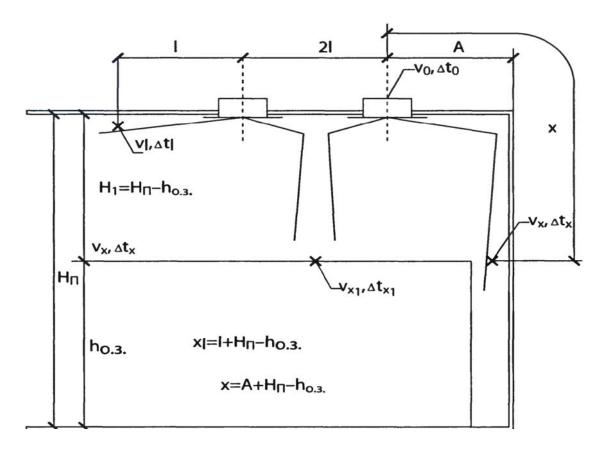


Рис. 2.3. Расчетная схема подачи воздуха веерной струей

На схеме (см. рис. 2.3) принята длина ℓ – половина расстояния между воздухораспределителями, A – расстояние от воздухораспределителя до стены. Значения избыточной температуры в струе и скорости воздуха определяют для двух точек на границе обслуживаемой зоны: у стены и между двумя воздухораспределителями. Тогда расчетная длина траектории струи будет равна

$$x = H_{\rm II} - h_{\rm p3} + A, \qquad (2.24)$$

$$x_1 = H_{\pi} - h_{p_3} + \ell . {(2.25)}$$

Для дальнейших расчетов принимается наименьшее значение длины траектории струи $x_{\rm Tp}$.

Таблица 2.6 Рекомендуемые воздухораспределители и их аэродинамические характеристики

Тип воздухораспределителя	Регулирование	m	n
ДПУ-М	_	0,6	0,5
4АПН, 4АПР	_	2,2	1,6

Порядок расчета

Потолок разбивают на ячейки, в центре каждой из которых размещается воздухораспределитель. Размещение воздухораспределителей должно отвечать условию

$$0.5 \le \frac{\ell}{x_{\text{TD}}} \le 1.5. \tag{2.26}$$

Количество ячеек определит количество воздухораспределителей N.

- 2. По табл. 2.6 принимают тип воздухораспределителя и выписывают аэродинамическую m и тепловую n характеристики приточной струи.
- 3. Определяют допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$, м/с, по формуле (2.1).
- 4. Определяют допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$, °C, по формуле (2.2).
- 5. Определяют расход воздуха через один воздухораспределитель по формуле (2.8).
 - 6. Определяют коэффициент стеснения струи по табл. 2.7

Таблица 2.7 Значения коэффициента стеснения $k_{\rm cr}$

$\frac{h - h_{\rm p3}}{\sqrt{F_{\rm p3}}}$	0,1	0,2	0,3	0,4	0,5	0,6
$k_{ m ct}$	0,9	0,88	0,82	0,72	0,68	0,64

7. Определяют требуемую площадь живого сечения воздухораспределителя A_0 , M^2 , по формуле

$$A_{\rm o} = \left(\frac{L_{\rm Bp} \cdot m \cdot k_{\rm cr}}{3600 \cdot \upsilon_{x}^{\rm non} \cdot x}\right)^{2}.$$
 (2.27)

- 8. По прил. 1 подбирают размер и площадь живого сечения воздухораспределителя.
- 9. Вычисляют фактическую скорость выхода воздуха из воздухораспределителя, м/с

$$v_{o} = \frac{L_{\text{Bp}}}{3600 \cdot A_{o}}.$$
 (2.28)

10. Вычисляют геометрическую характеристику струи по формуле (2.10).

11. Определяют фактическую протяженность безотрывного течения, м, по формуле (2.11)

$$x_{\text{orp}} = 0.4H$$
. (2.29)

Если $x_{\text{отр}} \ge \ell$ и $x_{\text{отр}} \ge A$, то далее определяют:

- коэффициент неизотермичности по формуле

$$k_{_{\rm H3}} = \sqrt[3]{1 - \frac{3}{2} \left(\frac{x_{_{\rm TP}}}{H}\right)},\tag{2.30}$$

- коэффициент взаимодействия принимают равным $k_{\text{вз}} = 1$.
- 12. Далее определяют максимальные параметры воздуха на основном участке:
 - максимальную скорость воздуха по формуле (2.13);
- максимальную разность температуры воздуха в помещении и на оси струи, °C, по формуле

$$\Delta t_{x.\text{max}} = \frac{n\Delta t_{\text{o}}\sqrt{A_{\text{o}}}}{x} \cdot \frac{1}{k_{\text{cr}}k_{\text{H3}}}.$$
 (2.31)

Полученные значения сравнивают с нормируемыми значениями.

Пример 2.3

Дано: Размер помещения $a \cdot b = 18 \cdot 6 = 108$ м, высота $h_{\rm II} = 4$ м, $h_{\rm p.3} = 2$ м. Воздухообмен постоянный круглогодично и составляет $L_{\rm p} = 1500$ м³/ч, $t_{\rm B} = 18$ °C, $t_{\rm IIp} = 16$ °C. Допустимая, расчетная подвижность воздуха в рабочей зоне 0.2 м/с.

Определить: типоразмер решеток и их количество.

1. Предварительно определяем количество воздухораспределителей из условия обеспечения необходимых геометрических соотношений

В помещении устанавливаем 3 воздухораспределителя типа 4АПН (m = 2,2; n = 1,6).

Размер одной ячейки принимаем равным $F_{\rm p3} = 6.6 = 36 \, {\rm m}^2$, тогда $\ell = A = 3 \, {\rm m}$.

- 2. Определяем длину распространения струи по формулам (2.24) и (2.26) $x_1 = x = h_{\Pi} h_{\Pi,3} + \ell = 4 2 + 3 = 5 \text{ м}.$
- 3. Проверяем условие (2.26)

$$0,5 \le \frac{3}{5} = 0,6 \le 1,5$$
.

Условие выполняется.

4. Определяем допустимую скорость воздуха в точке входа оси струи в рабочую зону $\upsilon_x^{\text{доп}}$ по формуле (2.1)

$$v_r^{\text{доп}} = 1, 4 \cdot 0, 2 = 0, 28 \text{ m/c}.$$

5. Определяем допустимую температуру воздуха в точке входа струи в рабочую зону $t_x^{\text{доп}}$ по формуле (2.2)

$$t_x^{\text{доп}} = 18 - 2 = 16$$
 °C.

6. Определяем расход воздуха через один воздухораспределитель по формуле (2.8)

$$L_{\rm Bp} = \frac{1500}{3} = 500 \,\mathrm{m}^3/\mathrm{H} \,.$$

7. По табл. 2.7 определяем коэффициент стеснения струи $k_{\rm cr}$ = 0,82, при условии

$$\frac{4-2}{\sqrt{36}} = 0.3$$
.

8. Определяем требуемую площадь живого сечения воздухораспределителя A_0 , по формуле (2.27)

$$A_{\rm o} = \left(\frac{500 \cdot 2, 2 \cdot 0, 82}{3600 \cdot 0, 28 \cdot 5}\right)^2 = 0,032 \text{ m}^2.$$

- 9. По прил. 1 подбираем решетку типа 4АПН 450×300 с A_0 = 0,04 м².
- 10. Вычисляем фактическую скорость выхода воздуха из воздухораспределителя по формуле (2.28)

$$v_o = \frac{500}{3600 \cdot 0.04} = 3.5 \text{ m/c}.$$

- 11. Далее вычисляем:
- геометрическую характеристику струи по формуле (2.10)

$$H = 5,45 \frac{2,2 \cdot 3,5 \cdot \sqrt[4]{0,04}}{\sqrt{1,6 \cdot 2}} = 10,5 \text{ m};$$

- фактическую протяженность безотрывного течения по формуле (2.29)

$$x_{\text{op}} = 0, 4 \cdot 10, 5 = 4, 2 \text{ M}.$$

Так как $x_{\text{отр}} = 4, 2 \ge \ell = 3$, определяем:

- коэффициент неизотермичности по формуле (2.30)

$$k_{\text{\tiny H3}} = \sqrt[3]{1 - \frac{3}{2} \left(\frac{5}{10.5}\right)} = 0.7;$$

- коэффициент взаимодействия принимаем равным $k_{\text{вз}} = 1$.
- максимальную скорость воздуха по формуле (2.12)

$$\upsilon_{x.\max} = \frac{1, 6 \cdot 3, 5 \cdot \sqrt{0,04}}{5} \cdot 1 \cdot 0, 7 \cdot 0, 82 = 0, 13 \text{ m/c} \le \upsilon_{x}^{\text{доп}} = 0, 28 \text{ m/c};$$

 максимальную разность температуры воздуха в помещении и на оси струи по формуле

$$\Delta t_{x.\text{max}} = \frac{1,6 \cdot 3,5 \cdot \sqrt{0,04}}{5} \cdot \frac{1}{0,7 \cdot 0,82} = 0,4 \le \Delta t = 2 \, ^{\text{o}}\text{C}.$$

Условия выполняются.

Окончательно принимаем воздухораспределители типа 4AПН 450×300 в количестве 3 шт.

2.3.4. Подача воздуха компактной асимметричной струей

Расчет компактной асимметричной струи выполняется аналогично с веерной струей, но без расчета $x_{\text{отр}}$.

В этом случае изменяются:

– расчетная длина траектории струи будет равна, м

$$x = h_{\text{II}} - h_{\text{P3}};$$
 (2.32)

- коэффициент стеснения струи принимают по табл. 2.8

 $\begin{tabular}{ll} $\mathsf{T}\ \mathsf{a}\ \mathsf{б}\ \mathsf{n}\ \mathsf{u}\ \mathsf{ц}\ \mathsf{a}\ \ 2\ .\ 8 \\ 3 \mathsf{н} \mathsf{a}\mathsf{ч}\mathsf{e}\mathsf{н}\mathsf{u}\mathsf{s}\ \mathsf{к}\mathsf{o}\mathsf{\ni}\mathsf{\varphi}\mathsf{\varphi}\mathsf{u}\mathsf{q}\mathsf{u}\mathsf{e}\mathsf{h}\mathsf{t}\mathsf{r}\mathsf{a}\ \mathsf{c}\mathsf{t}\mathsf{e}\mathsf{c}\mathsf{t}\mathsf{e}\mathsf{h}\mathsf{u}\mathsf{s}\ \mathit{k}_{\mathsf{c}\mathsf{t}} \\ \end{tabular}$

$\frac{h - h_{\rm p3}}{\sqrt{F_{\rm p3}}}$	0,1	0,2	0,3	0,4	0,5	0,6
$k_{ m cr}$	1	1	1	0,94	0,76	0,56

Рекомендуемые воздухораспределители и их аэродинамические характеристики представлены в табл. 2.9.

Таблица 2.9 Рекомендуемые воздухораспределители и их аэродинамические характеристики

Тип воздухораспределителя	Регулирование	m	n
	$\alpha_1=0^{\circ}$	6,0	5,1
AMILAMD AMILIC AMDIC	$\alpha_1=30^{\circ}$	3,9	3,3
AMH, AMP, AMH-K, AMP-K	$\alpha_1=45^{\circ}$	3,6	3,0
	$\alpha_1 = 60^{\circ}$	3,3	2,8
	$\alpha_1 = \alpha_2 = 0^{\circ}$	6,0	5,1
	$\alpha_1 = \alpha_2 = 30^{\circ}$	3,3	2,8
АДН, АДР, АДН-К, АДР-К	$\alpha_1 = \alpha_2 = 45^{\circ}$	3,0	2,6
	$\alpha_1 = \alpha_2 = 60^{\circ}$	2,6	2,0
ДПУ-М	b=0,2A	1,5	1,3

Контрольные вопросы

- 1. Что необходимо учитывать при выборе схемы организации воздухообмена и способе распределения воздуха?
- 2. Каким образом осуществляется подача воздуха в помещение? При помощи каких устройств? Где они могут располагаться?
- 3. В чем основное назначение приточных струй? Какими они могут быть? В чем их особенности?
 - 4. Каковы рекомендуемые схемы воздухораспределения?

3. АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ ВОЗДУХОВОДОВ

Аэродинамический расчет воздуховодов обычно сводится к определению размеров их поперечного сечения [3, 18, 19, 20, 21, 22, 23], а также потерь давления на отдельных участках и в системе в целом.

Расчет систем вентиляции выполняют после расчета воздухообмена в помещениях и решения по трассировке воздуховодов и каналов. Для проведения аэродинамического расчета вычерчивают аксонометрическую схему системы вентиляции, по которой определяют протяженность отдельных ее ветвей и размещают элементы сети.

Намечается основное расчетное направление, представляющее собой цепочку последовательно расположенных участков от начала системы до наиболее удаленного ответвления. При наличии нескольких цепочек, одинаковых по протяженности, за магистральное направление принимается наиболее нагруженная ветка (имеющая больший расход).

Потери давления в системе равны потерям давления на всех последовательно расположенных участках, составляющих цепь, и потерь давления в вентиляционном оборудовании (калориферах, фильтрах и пр.).

3.1. Аэродинамический расчет систем вентиляции с механическим побуждением движения воздуха

Расчет состоит из двух этапов: расчета участков основного направления и увязки всех остальных участков системы. Рассмотрим последовательность аэродинамического расчета.

- 1. Систему разбивают на отдельные участки и определяют расход воздуха на каждом из них. За расчетный участок принимают часть сети, где постоянны расход воздуха L, сечение $(d, a \times b)$ и материал воздуховода (т.е. шероховатость стенок). Значения расходов, длину каждого участка наносят на аксонометрическую схему.
- 2. Выявляют наиболее протяженную цепочку последовательно расположенных расчетных участков. Фиксируют оборудование и устройства, в которых происходят потери давления: жалюзийные решетки, противопожарные клапаны и др.
 - 3. Участки основного направления нумеруют. Далее весь расчет сводится в табл. 3.1.

Таблица 3.1 Аэродинамический расчет воздуховодов

				воздух	меры ховодо оуголь		υ, M/c	Па/м	$eta_{ m m}$	$R\elleta_{\mathrm{m}},\Pi \mathrm{a}$	IbIX	Па	ія Z, Па	e
Номер участка	Расход воздуха L , м 3 /ч	Длина участка ℓ , м	Круглых <i>d</i> , мм	f_m , M^2	<i>a</i> × <i>b</i> , мм	<i>d</i> _{эк} , мм	Скорость движения воздуха	Vдельные потери на трение R ,	Поправка на шероховатость	Потери на трение на участке	Сумма коэффициентов местных сопротивлений, Σζ	Динамическое давление P_{d} ,	Потери на местные сопротивления	Потери давления на участке $R\elleta$ ш + Z , Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Заполнение таблицы производится следующим образом (по графам):

Графа 1. Ставится номер участка.

Графа 2. Записываются расходы воздуха на участках. Расходы воздуха определяют суммированием расходов на отдельных ответвлениях, начиная с крайних участков.

Графа 3. Записываются длины участков.

Графы 4,5,6,7. Определяют площадь поперечного сечения расчетного участка $f_{\rm p}$, м², по формуле

$$f_{\rm p} = \frac{L_{\rm yq}}{3600 \cdot v_{\rm pek}},\tag{3.1}$$

где $L_{\rm yu}$ — расчетный расход воздуха на участке, м 3 /ч;

 $\upsilon_{\text{рек}}$ — рекомендуемая скорость движения воздуха на участке, м/с, исходя из экономичности и бесшумности, принимается по работе [18], (табл. 3.2).

Таблица 3.2

Рекомендуемые скорости движения воздуха υ , м/с, допускаемые в воздуховодах приточных и вытяжных систем в общественных зданиях

	Скорость	воздуха, м/с
Элемент системы	естественное движение воздуха	механическое движение воздуха
Магистральные каналы	не более 1,5	до 8
Ответвления	0,5–1	до 5

В зависимости от $f_{\rm p}$ по табл. 3.3–3.5 подбирают стандартные размеры воздуховодов или каналов так, чтобы фактическая площадь поперечного сечения была близка к расчетной $f_{\rm p} \approx f_{\rm p}$.

Результатом расчета являются величины d (для воздуховодов круглого сечения) или $a \times b$ (для воздуховодов прямоугольного сечения), соответствующие принятой площади поперечного сечения.

Таблица 3.3 Нормируемые размеры круглых воздуховодов из листовой стали

	Площадь		Площадь		Площадь
d, mm	поперечного	d, mm	поперечного	d, mm	поперечного
	сечения, м2		сечения, м2		сечения, м2
100	0,0079	400	0,126	900	0,635
125	0,0123	450	0,159	1000	0,785
160	0,02	500	0,196	1120	0,985
200	0,0314	560	0,246	1250	1,23
250	0,049	630	0,312	1400	1,54
315	0,0615	710	0,396	1600	2,01
355	0,099	800	0,501	1800	2,54

Таблица 3.4 Нормируемые размеры прямоугольных воздуховодов

Внутренний	Площадь	Внутренний	Площадь	Внутренний	Площадь
размер,	поперечного	размер,	поперечного	размер,	поперечного
a× b , мм	сечения, м2	$a \times b$, mm	сечения, м2	$a \times b$, mm	сечения, м2
100×150	0,015	300×400	0,12	600×800	0,48
100×200	0,02	300×500	0,15	600×1000	0,6
100×250	0,025	300×600	0,18	600×1200	0,72
150×150	0,0225	300×800	0,24	600×1600	0,96
150×200	0,03	300×1000	0,3	600×2000	1,2
150×250	0,0375	400×400	0,16	800×800	0,64
150×300	0,045	400×500	0,2	800×1000	0,8
200×200	0,04	400×600	0,24	800×1200	0,96
200×250	0,05	400×800	0,32	800×1600	1,28
200×300	0,06	400×1000	0,4	800×2000	1,6
200×400	0,08	400×1200	0,48	1000×1000	1,0
200×500	0,1	500×500	0,25	1000×1600	1,6
250×250	0,0625	500×600	0,3	1000×2000	2,9
250×300	0,075	500×800	0,4	1200×1200	1,44
250×400	0,1	500×1000	0,5	1200×1600	1,92
250×500	0,125	500×1200	0,6	1200×2000	2,4
250×600	0,15	500×1600	0,8	1600×1600	2,56
250×800	0,2	500×2000	1	1600×2000	3,2
300×300	0,9	600×600	0,36		

Таблица 3.5 Размеры каналов из кирпича

Разм	еры	Площадь	Разме	ры	Площадь
в кирпичах	В ММ	поперечного сечения, м ²	в кирпичах	в мм	поперечного сечения, м ²
$^{1}/_{2} \times ^{1}/_{2}$	140×140	0,02	$1^{1}/_{2} \times 1^{1}/_{2}$	400×400	0,16
$^{1}/_{2} \times 1$	140×270	0,038	$1^{1}/_{2} \times 2$	400×530	0,21
1×1	270×270	0,073	$1^{1}/_{2} \times 2^{1}/_{2}$	400×650	0,26
$1 \times 1^{1}/_{2}$	270×400	0,111	$1^{1}/_{2} \times 3$	400×790	0,32
1×2	270×530	0,143	2×2	530×530	0,28

Для прямоугольных воздуховодов за расчетную величину d принимается эквивалентный диаметр $d_{3\kappa}$, при котором потери давления в круглом воздуховоде при той же скорости воздуха равны потерям в прямоугольном воздуховоде.

Значения эквивалентных диаметров, мм, определяются по формуле

$$d_{\mathfrak{K}} = \frac{2 \cdot a \cdot b}{(a+b)},\tag{3.2}$$

где a и b – размеры сторон прямоугольного воздуховода, мм.

Следует иметь в виду, что в прямоугольном воздуховоде и соответствующем ему круглом воздуховоде с условным диаметром $d_{\text{эк}}$ при равенстве скоростей движения воздуха расходы воздуха не совпадают.

Графа 8. Уточняют фактическую скорость движения воздуха на участке по формуле

$$\upsilon = \frac{L_{yq}}{3600 \cdot f_{\phi}}.$$
 (3.3)

Графы 9, 13. Удельные потери на трение и динамическое давление P_d определяют по работе [18], (прил. 2) в зависимости от d_{3K} , υ и L_{VY} .

Графа 10. Для воздуховодов, выполненных из других материалов с абсолютной эквивалентной шероховатостью $K \ge 0,1$, мм, (табл. 3.6) принимается поправочный коэффициент $\beta_{\rm m}$ на потери давления на трение, приведенный в табл. 3.7.

Таблица 3.6 Абсолютная эквивалентная шероховатость стенок воздуховодов K, мм, изготовленных из различных материалов

Материал стенок воздуховодов	K, mm
Листовая сталь	0,1
Шлакобетонные плиты	1,5
Винипласт	0,1
Кирпичная кладка (каналы в стене)	5,0-10,0
Резиновые рукава	0,006-0,01

Таблица 3.7 Поправочный коэффициент $\beta_{\rm m}$ для расчета воздуховодов с различной шероховатостью стенок K, мм, при различных скоростях движения воздуха в сечении υ , м/с

1) M/c					$\beta_{ m m}$			
υ, м/c	K=0,1	<i>K</i> =0,2	<i>K</i> =0,5	<i>K</i> =2,0	K=5,0	<i>K</i> =10,0	<i>K</i> =15,0	<i>K</i> =20,0
0,3	0,996	1,005	1,019	1,082	1,183	1,309	1,407	1,488
0,5	0,993	1,008	1,031	1,127	1,126	1,413	1,552	1,650
1,0	0,986	1,015	1,057	1,216	1,420	1,637	1,792	1,915
2,5	0,966	1,034	1,120	1,388	1,682	1,973	2,173	2,329
3,0	0,960	1,039	1,136	1,429	1,740	2,045	2,254	2,418
5,0	0,938	1,057	1,189	1,549	1,908	2,253	2,487	2,669
10,0	0,894	1,088	1,270	1,712	2,130	2,524	2,790	2,996
15,0	0,861	1,107	1,316	1,800	2,247	2,666	2,948	3,166

Графа 11. Потери давления на трение на участке определяют путем перемножения граф 3, 9, 10.

Графа 12. В местах поворота воздуховода, при делении потока и слиянии потоков в тройниках, при изменении размеров воздуховода (расширение — в диффузоре, сужение — в конфузоре), при входе в воздуховод или канал и выходе из него, а также в местах установки регулирующих устройств (дросселей, шиберов, диафрагм) наблюдается падение давления в потоке перемещающегося воздуха.

Для получения значений графы 12 составляют ведомость местных сопротивлений, в которой определяют значения коэффициентов всех местных сопротивлений участков ζ по работе [18], (прил. 3). Коэффициент ζ относится к наибольшей скорости в суженном сечении участка или скорости в сечении участка с меньшим расходом (в тройнике). В таблицах коэффициентов местных сопротивлений указано, к какой скорости относится ζ . В отдельных случаях коэффициент местного сопротивления имеет отрицательное значение, при расчетах это следует учитывать.

Графа 14. Потери давления в местных сопротивлениях участка Z, Π а, определяют по формуле

$$Z = \sum \zeta \cdot P_d, \tag{3.4}$$

где $\sum \zeta$ – сумма коэффициентов местных сопротивлений на участке (см. табл. 3.1, графу 12).

Графа 15. Общие потери давления на участке определяют путем сложения графы 11 и графы 14.

Общие потери давления в системе $\Delta P_{\scriptscriptstyle \Pi}$, Π a, определяют по формуле

$$\Delta P_{\Pi} = \sum_{i=1}^{N} \left(R \beta_{\Pi i} \ell + Z \right), \tag{3.5}$$

где 1...N – номера участков основного направления.

Увязку всех остальных участков системы проводят, начиная с самых протяженных ответвлений. Методика увязки ответвлений аналогична расчету участков основного направления. Разница состоит лишь в том, что при увязке каждого ответвления известны потери в нем. Для расчета ответвлений применяют способ последовательного подбора. Размеры сечений ответвлений считаются подобранными, если относительная невязка потерь не превышает 10 % [18]

$$\frac{\left(R\beta_{\rm III}\ell+Z\right)_{\rm yч.o.H}-\left(R\beta_{\rm III}\ell+Z\right)_{\rm отв}}{\left(R\beta_{\rm III}\ell+Z\right)_{\rm yч.o.H}}\cdot100\,\%\,\leq10\,\%\,,\eqno(3.6)$$
 где $\left(R\beta_{\rm III}\ell+Z\right)_{\rm yч.o.H}-$ потери давления на участках основного направления, Па;

$$(R\beta_{\text{III}}\ell + Z)_{\text{отв}}$$
 — потери давления в ответвлении, Па.

В случае невыполнения условия (3.6) на ответвлении устанавливают диафрагму. При расчете диафрагмы необходимо обеспечивать условие, чтобы потери давления в диафрагме при соответствующей скорости воздуха в воздуховоде были равны избыточному давлению, которое требуется погасить на данном ответвлении сети.

Расчет и подбор диафрагмы выполняют в такой последовательности.

1. Определяют избыточное давление, Па, которое необходимо погасить по формуле

$$P_{\text{\tiny M36}} = \left(R\beta_{\text{\tiny III}}\ell + Z\right)_{\text{\tiny V4.0.H}} - \left(R\beta_{\text{\tiny III}}\ell + Z\right)_{\text{\tiny OTB}}.$$
 (3.7)

- 2. По работе [18] или прил. 3 определяем скоростное давление $P_{\rm c}$ в воздуховоде соответствующее скорости воздуха υ.
- 3. Определяют коэффициент местного сопротивления диафрагмы по формуле

$$\varsigma = \frac{P_{\text{изб}}}{P_{\text{c}}}.$$
 (3.8)

4. По работе [18], (прил. 4) подбирают сечение диафрагмы.

Пример 3.1

Выполнить аэродинамический расчет приточной системы вентиляции (П1) с механическим побуждением движения воздуха. Величины расходов воздуха L, м³/ч, и длин ℓ , м, участков представлены на схеме (рис. 3.1). В качестве воздухораспределителя установлены решетки типа АМН.

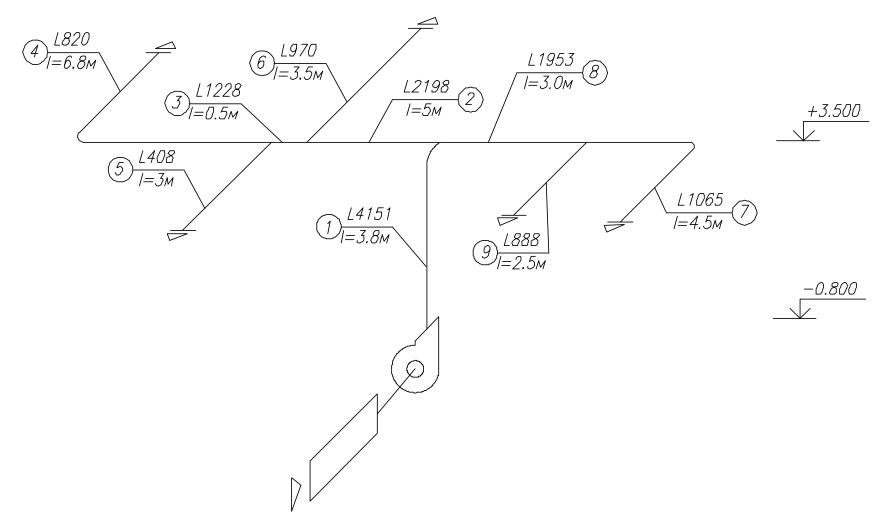


Рис. 3.1. Расчетная схема системы $\Pi 1$

Порядок расчета

- 1. Сначала заносят в табл. 3.8 номера участков (графа 1) и длины участков (графа 3) основного направления движения воздуха, а затем параллельных участков, оставляя свободное место для вычисления невязок потерь давления.
 - 2. Определяем расходы воздуха на участках (графа 2):

1-й участок $L_1 = L_2 + L_8 = 2198 + 1953 = 4151$ м³/ч,

2-й участок $L_2 = L_3 + L_6 = 1228 + 970 = 2198 \text{ м}^3/\text{ч}$,

3-й участок $L_3 = L_4 + L_5 = 820 + 408 = 1228 \text{ м}^3/\text{ч}$,

4-й участок L_4 =820 м³/ч, 5 участок L_5 = 408 м³/ч,

6-й участок $L_6 = 970 \text{ м}^3/\text{ч}$, 7 участок $L_7 = 1065 \text{ м}^3/\text{ч}$,

8-й участок $L_8 = L_7 + L_9 = 1065 + 888 = 1953$ м₃/ч.

9-й участок $L_9 = 888 \text{ м}^3/\text{ч}$,

3. Задавшись скоростью воздуха по табл. 3.2, по формуле (3.1) определяем живое сечение воздуховода и по табл. 3.4 подбираем стандартное сечение прямоугольного воздуховода. Данные заносят в графы 5 и 6

$$\begin{split} f_{\text{P1}} = & \frac{4151}{3600 \cdot 8} = 0,144 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,15 \text{ м}^2, \\ f_{\text{P2}} = & \frac{2198}{3600 \cdot 7} = 0,087 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,1 \text{ м}^2, \\ f_{\text{P3}} = & \frac{1228}{3600 \cdot 6} = 0,057 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,06 \text{ м}^2, \\ f_{\text{P4}} = & \frac{820}{3600 \cdot 5} = 0,046 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,05 \text{ м}^2, \\ f_{\text{P5}} = & \frac{408}{3600 \cdot 5} = 0,023 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,0375 \text{ м}^2, \\ f_{\text{P6}} = & \frac{970}{3600 \cdot 5} = 0,054 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,06 \text{ м}^2, \\ f_{\text{P7}} = & \frac{1065}{3600 \cdot 5} = 0,059 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,06 \text{ м}^2, \\ f_{\text{P8}} = & \frac{1953}{3600 \cdot 6} = 0,099 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,1 \text{ м}^2, \\ f_{\text{P9}} = & \frac{888}{3600 \cdot 5} = 0,049 \text{ м}^2, \text{ тогда } f_{\varphi} = 0,05 \text{ м}^2. \end{split}$$

Таблица 3.8 Аэродинамический расчет системы П1

				Размеры	воздуховодо	В	ω,	К,	$eta_{ m m}$		X			
					ямоугольны					TKe	THIE	o		ТКе
Номер участка	Расход воздуха L , м 3 /ч	Длина участка $\ell,$ м	Круглых d , мм	$f_{\scriptscriptstyle m T},{ m M}^2$	$A \!\! imes \!\! B,$ MM	$d_{ m эк}$, мм	Скорость движения воздуха м/с	Удельные потери на трение Па/м	Поправка на шероховатость	Потери на трение на участке $R\ell eta_{ m m},$ Па	Сумма коэффициентов местных сопротивлений, Σζ	Динамическое давление P_d , Па	Потери на местные сопротивления Z , Па	Потери давления нВ участке $R\elleta_{ m ut}+Z$, Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	4151	3,8	-	0,15	600×250	355	7,7	1,764	0,938	6,3	0,79	34,6	27,3	33,6
2	2198	5,0	-	0,1	400×250	315	6,1	1,333	0,938	6,3	1	22,34	22,3	28,6
3	1228	0,5	-	0,06	300×200	250	5,7	1,568	0,938	0,7	0,3	19,5	5,9	6,6
4	820	6,8	-	0,05	250×200	225	4,6	1,205	0,96	7,9	2,66	12,64	33,6	41,5
														Σ110,3
5	408	3,0	-	0,0375	250×450	200	3,0	0,892	0,96	2,6	4,4	7,77	34,2	36,8
6	970	3,5	-	0,06	300×200	250	4,5	1,019	0,96	3,4	3,3	12,15	40,1	43,4
7	1065	4,5	-	0,06	300×200	250	4,9	1,186	0,96	5,1	2,93	14,41	42,2	47,3
8	1953	3,0	-	0,1	400×250	315	5,4	1,058	0,938	3,0	1	17,44	17,4	20,4
9	888	2,5	-	0,05	250×200	225	4,9	1,186	0,96	2,9	2,7	14,41	38,2	41,1

4. Далее уточняем скорость движения воздуха в стандартном сечении по формуле (3.3) и данные заносим в графу 8

$$\begin{split} \upsilon_1 &= \frac{820}{3600 \cdot 0,05} = 4,6 \text{ m/c}, & \upsilon_2 &= \frac{1228}{3600 \cdot 0,06} = 5,7 \text{ m/c}, \\ \upsilon_3 &= \frac{2198}{3600 \cdot 0,1} = 6,1 \text{ m/c}, & \upsilon_4 &= \frac{4151}{3600 \cdot 0,15} = 7,7 \text{ m/c}, \\ \upsilon_5 &= \frac{408}{3600 \cdot 0,0375} = 3,0 \text{ m/c}, & \upsilon_6 &= \frac{970}{3600 \cdot 0,06} = 4,5 \text{ m/c}, \\ \upsilon_7 &= \frac{1065}{3600 \cdot 0,06} = 4,9 \text{ m/c}, & \upsilon_8 &= \frac{1953}{3600 \cdot 0,1} = 5,4 \text{ m/c}, \\ \upsilon_9 &= \frac{888}{3600 \cdot 0,05} = 4,9 \text{ m/c}. \end{split}$$

5. Определяем значения эквивалентных диаметров по формуле (3.2) и данные заносим в графу 7

$$d_{\scriptscriptstyle {\rm 9K}} = \frac{2 \cdot 250 \cdot 150}{\left(250 + 150\right)} = 188 \approx 200 \, {\rm mm}, \qquad d_{\scriptscriptstyle {\rm 9K}} = \frac{2 \cdot 250 \cdot 200}{\left(250 + 200\right)} = 222 \approx 225 \, {\rm mm},$$

$$d_{\scriptscriptstyle {\rm 9K}} = \frac{2 \cdot 300 \cdot 200}{\left(300 + 200\right)} = 240 \approx 250 \, {\rm mm}, \qquad d_{\scriptscriptstyle {\rm 9K}} = \frac{2 \cdot 400 \cdot 250}{\left(400 + 250\right)} = 308 \approx 315 \, {\rm mm},$$

$$d_{\scriptscriptstyle {\rm 9K}} = \frac{2 \cdot 600 \cdot 250}{\left(600 + 250\right)} = 353 \approx 355 \, {\rm mm}.$$

- 6. По прил. 2 в зависимости от $d_{3\kappa}$, υ , L определяем удельные потери на трение R и динамическое давление P_d . Данные заносим в графы 9 и 13.
- 7. По табл. 3.6 и 3.7 принимаем поправочный коэффициент $\beta_{\text{ш}}$ на потери давления на трение для воздуховодов из листовой стали.
- 8. Определяем потери давления на трение на участке (графа 11) путем перемножения граф 3, 9, 10.
- 9. Для получения значений графы 12 составляем ведомость местных сопротивлений, в которой определяем значения коэффициентов всех местных сопротивлений участков ζ по прил. 3.

Ведомость местных сопротивлений

Ведомость местных сопротивлений	
1 участок Отвод 90° Диффузор пирамидальный (табл. ПЗ.11)	$\zeta = 0.59$ $\zeta = 0.2$ $\Sigma \zeta = 0.79$
2 участок Тройник на ответвление (табл. ПЗ.9) $L_{\rm o}/L_{\rm c}=1953/4151=0,5$ $f_{\rm o}/f_{\rm c}=0,1/0,15=0,7$	ζ = 1
3 участок Тройник на проход $L_{\rm o}/L_{\rm c}=970/2198=0,4$ $f_{\rm fi}/f_{\rm c}=0,06/0,1=0,6$	$\zeta = 0.3$
4 участок Решетка вентиляционная (табл. ПЗ.1) Отвод 90° (табл. ПЗ.10) Тройник на проход (табл. ПЗ.8) $L_{\rm o}/L_{\rm c}=408/1228=0.3$ $f_{\rm fi}/f_{\rm c}=0.05/0.06=0.8$	$\zeta = 2,2$ $\zeta = 0,26$ $\zeta = 0,2$
	$\Sigma \zeta = 2,66$
5 участок Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=408/1228=0,3$ $f_{\rm o}/f_{\rm c}=0,0375/0,06=0,6$	$\zeta = 2,2$ $\zeta = 2,2$
Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=408/1228=0,3$ $f_{\rm o}/f_{\rm c}=0,0375/0,06=0,6$	•
Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=408/1228=0,3$ $f_{\rm o}/f_{\rm c}=0,0375/0,06=0,6$ 6 участок Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=970/2198=0,4$	$\zeta = 2,2$
Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=408/1228=0,3$ $f_{\rm o}/f_{\rm c}=0,0375/0,06=0,6$ 6 участок Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=970/2198=0,4$ $f_{\rm o}/f_{\rm c}=0,06/0,1=0,6$	$\zeta = 2,2$ $\Sigma \zeta = 4,4$ $\zeta = 2,2$
Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=408/1228=0,3$ $f_{\rm o}/f_{\rm c}=0,0375/0,06=0,6$ 6 участок Решетка вентиляционная Тройник на ответвление $L_{\rm o}/L_{\rm c}=970/2198=0,4$	$\zeta = 2,2$ $\Sigma \zeta = 4,4$ $\zeta = 2,2$ $\zeta = 1,1$

8 участок

Тройник на ответвление
$$\zeta=1$$
 $L_{\rm o}/L_{\rm c}=1953/4151=0,5$ $f_{\rm o}/f_{\rm c}=0,1/0,15=0,7$

9 участок

Решетка вентиляционная
$$\zeta = 2,2$$
 Тройник на ответвление
$$L_{\rm o}/L_{\rm c} = 888 / 1953 = 0,5$$

$$f_{\rm fi}/f_{\rm c} = 0,05 / 0,1 = 0,5$$

$$\Sigma \zeta = 2,65$$

- 10. Определяем потери давления в местных сопротивлениях по формуле (3.4) и данные заносим в графу 14.
- 11. Определяем общие потери давления на участке путем сложения графы 11 и графы 14.
 - 12. Определяем общие потери давления в системе по формуле (3.5).
- 13. После заполнения всех граф определяем величины невязок потерь давления по формуле (3.6).

Производим увязку ответвления и магистрали:

– участки 4 и 5

$$\frac{41,5-36,8}{41.5} \cdot 100\% = 11 > 10\%$$
.

Так как невязка на 4 и 5 участках составляет 11 %, что больше 10 %, то устанавливаем диафрагму на участке 5. Определяем избыточное давление, которое необходимо погасить по формуле (3.7)

$$P_{\text{изб}} = 41,3-36,8 = 4,7 \ \Pi a$$
.

Определяем коэффициент местного сопротивления диафрагмы по формуле (3.8)

$$\zeta = \frac{P}{P_c} = \frac{4.7}{7.77} = 0.6$$
.

По прил. 4 подбираем сечение диафрагмы – 225×125.

Увязываем участки 3, 4 и 6

$$\frac{(41,5+6,6)-43,4}{(41,5+6,6)}\cdot 100\% = 9,8 \le 10\%.$$

Так как невязка на 3, 4 и 6 участках составляет 9,8 %, что меньше 10 %, то устанавливать диафрагму не нужно.

Увязываем участки 7 и 9

$$\frac{47,3-41,1}{47,3} \cdot 100\% = 13,1 > 10\%$$
.

Так как невязка на 7 и 9 участках составляет 13,1 %, что больше 10 %, то устанавливаем диафрагму на участке 9. Определяем избыточное давление, которое необходимо погасить

$$P_{\text{M36}} = 47,3 - 41,1 = 6,2 \text{ }\Pi\text{a} \text{ }.$$

Определяем коэффициент местного сопротивления диафрагмы

$$\zeta = \frac{P}{P_c} = \frac{6.2}{14.41} = 0.4.$$

По прил. 4 подбираем сечение диафрагмы — 230×130 . Увязываем участки 2—4 и 7, 8

$$\frac{\left(41,5+6,6+28,6\right)-\left(47,3+20,4\right)}{\left(41,5+6,6+28,6\right)}\cdot100\% = 18,7 > 10\%.$$

Так как невязка на 1–3 и 7, 8 участках составляет 18,7 %, что больше 10 %, то устанавливаем диафрагму на участке 8. Определяем избыточное давление, которое необходимо погасить

$$P_{\text{\tiny M36}} = 76.8 - 67.7 = 9 \text{ }\Pi\text{a} \text{ }.$$

Определяем коэффициент местного сопротивления диафрагмы

$$\zeta = \frac{P}{P_c} = \frac{9}{17,44} = 0.6$$
.

По прил. 4 подбираем сечение диафрагмы -359×209 .

Пример 3.2

Выполнить аэродинамический расчет вытяжной системы вентиляции (В1) с механическим побуждением движения воздуха. Величины расходов воздуха L, м³/ч, и длин ℓ , м, участков представлены на схеме (рис. 3.2). В системе использованы воздухозаборные решетки типа РВ (250×250).

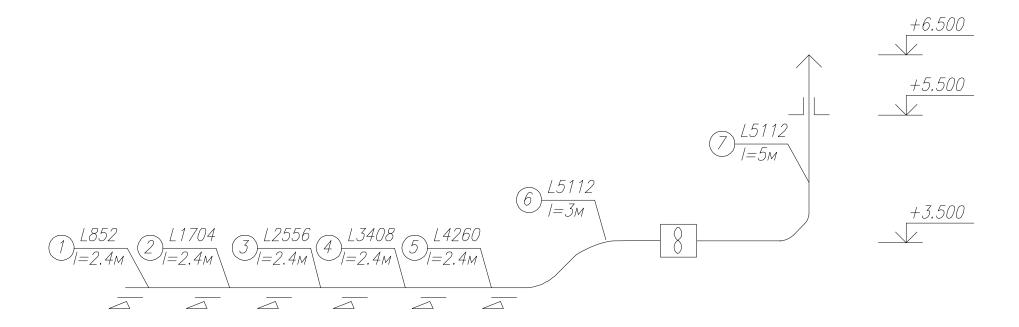


Рис. 3.2. Расчетная схема системы В1

Порядок расчета

Аэродинамический расчет сети воздуховодов системы В1 производим аналогично расчету приточной системы П1.

Ведомость местных сопротивлений

1 участок Первое боковое отверстие (табл. П3.1) $F_{\text{отв}}/F_{\text{o}}=0.062/0.0625=1$ 2 участок	ζ=2,2
Среднее боковое отверстие (табл. ПЗ.1) $F_{\text{отв}}/F_1 = 0{,}062/0{,}125 = 0{,}5$ $L_{\text{отв}}/L_2 = 852/1704 = 0{,}5$	ζ=0,3
$egin{aligned} 3 \ \mathbf{y}4\mathbf{a}\mathbf{c}\mathbf{T}\mathbf{o}\mathbf{\kappa} \\ \mathbf{C}\mathbf{p}\mathbf{e}\mathbf{g}\mathbf{h}\mathbf{e}\mathbf{e} \ 6\mathbf{o}\mathbf{k}\mathbf{o}\mathbf{b}\mathbf{o}\mathbf{e} \ \mathbf{o}\mathbf{t}\mathbf{B}\mathbf{e}\mathbf{p}\mathbf{c}\mathbf{t}\mathbf{u}\mathbf{e} \ 0\mathbf{p}\mathbf{o}\mathbf{x}\mathbf{o}\mathbf{g} \end{pmatrix} \\ F_{\mathbf{o}\mathbf{t}\mathbf{B}}/F_1 &= 0.062 \ / \ 0.125 \ = \ 0.5 \\ L_{\mathbf{o}\mathbf{t}\mathbf{B}}/L_2 &= 852 \ / \ 2556 \ = \ 0.3 \end{aligned}$	ζ=0,4
4 участок Среднее боковое отверстие (проход) $F_{\text{отв}}/F_1 = 0{,}062/0{,}125 = 0{,}5$ $L_{\text{отв}}/L_2 = 852/3408 = 0{,}3$	ζ=0,4
5 участок Среднее боковое отверстие (проход) $F_{\text{отв}}/F_1 = 0{,}062 / 0{,}15 = 0{,}4$ $L_{\text{отв}}/L_2 = 852 / 4260 = 0{,}2$	ζ=0,3
6 участок Среднее боковое отверстие (проход) $F_{\text{отв}}/F_1 = 0.062/0.18 = 0.4$ $L_{\text{отв}}/L_2 = 852/5112 = 0.2$	ζ=0,3
Отвод 90° (табл. $\Pi 3.7$)	$\zeta = 0.32$
7 участок Отвод 90° Зонт (табл. ПЗ.3)	ζ=0,21 ζ=1,3 Σζ=1,51

Таблица 3.9 Аэродинамический расчет системы B1

				Размеры	воздуховодо	В	_			0	PIX			(A)
	Ŧ			пр	ямоугольных	X.	yxs	ние	CTE	CTK	местных Σζ	1e		CTK(
Номер участка	Расход воздуха L , м 3 /ч	Длина участка ℓ , м	круглых d , мм	$f_{\scriptscriptstyle m T},$ ${ m M}^2$	$A{ imes}B,$ MM	<i>d</i> ₃к, ММ	Скорость движения воздуха v, м/с	Удельные потери на трение R, Па/м	Поправка на шероховатость βш	Потери на трение на участке $R\ell eta_{\mathrm{m}},$ Па	Сумма коэффициентов мес сопротивлений, Σζ	Динамическое давление P_d , Па	Потери на местные сопротивления Z, Па	Потери давления нВ участке $R\elleta_{ m m}+Z$, Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	852	2,4	_	0,0625	40×200	250	3,9	0,853	0,938	1,92	2,2	8,65	19,32	21
2	1704	2,4	_	0,1	400×250	315	4,7	0,559	0,894	1,2	0,3	8,65	2,6	4
3	2556	2,4	_	0,125	400×250	315	5,7	1,176	0,894	2,52	0,4	19,5	7,8	10
4	3408	2,4	_	0,15	500×300	400	6,3	1,049	0,894	2,25	0,4	23,81	9,52	12
5	4260	2,4	_	0,18	600×300	400	6,6	1,137	0,894	2,44	0,3	26,07	7,82	10
6	5112	3,0	_	0,18	600×300	400	7,9	1,588	0,894	4,26	0,3	37,44	11,23	16
7	5112	5,0	500	0,196	_	_	7,2	1,009	0,894	4,51	1,51	31,07	46,92	51
														∑124

3.2. Аэродинамический расчет систем вентиляции с естественным побуждением движения воздуха

В системах с естественным побуждением движения воздуха, в отличие от механических систем вентиляции, сумма потерь давления на участке не должна превышать располагаемого гравитационного давления ΔP , Па, которое определяется по формуле

$$\Delta P_e = gh(\rho_{\rm H} - \rho_{\rm B}), \tag{3.9}$$

где $g = 9.81 \,\mathrm{m/c^2}$ – ускорение свободного падения;

h — вертикальное расстояние от центра вытяжного отверстия до устья вытяжной шахты, м;

 $\rho_{_{\rm H}}$ и $\rho_{_{\rm B}}$ — плотность наружного и внутреннего воздуха, кг/м 3 .

В общественных зданиях расчет систем естественной вентиляции ведется для температуры наружного воздуха +5 °C.

Расчет сети каналов естественной вытяжной вентиляции обычно начинают с ветви, для которой расчетное гравитационное давление имеет наименьшее значение – это каналы из помещений верхнего этажа.

При расчете сети воздуховодов первоначально производят ориентировочный подбор их сечений, исходя из допустимых скоростей движения воздуха по ним (см. табл. 3.2). Для каналов верхнего этажа можно принять скорость $\upsilon = 0,5...0,8$ м/с, в каналах нижнего этажа и сборных каналах на чердаке – 1 м/с, в вытяжной шахте – 1–1,5 м/с.

Все расчеты сводятся в табл. 3.10.

Таблица 3.10 Аэродинамический расчет воздуховодов

				азмеры уховод			Па/м			тивлений		Па	
Номер участка	Расход воздуха L , м 3 /ч	Щ	$f_{\scriptscriptstyle m T},{ m M}^2$	<i>a</i> × <i>b</i> , MM	<i>d</i> _{Эк} , мм	Скорость движения воздуха р, м/с	Удельные потери на трение R,	Поправка на шероховатость eta_{m}	Потери на трение на участке $R\elleta_{\mathrm{m}}$, Па	Сумма коэффициентов местных сопротивлений $\Sigma \zeta$. Динамическое давление P_d , Па	Потери на местные сопротивления Z ,	Потери давления на участке $R\ell eta_{\mathrm{m}} + Z$, Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Пример 3.3

Определить сечения каналов и решеток системы естественной вентиляции, представленной на рис. 3.3. Величины расходов воздуха L, м³/ч, и длин ℓ , м, участков представлены на схеме. В системе использованы воздухозаборные решетки типа АМН (прил. 1).

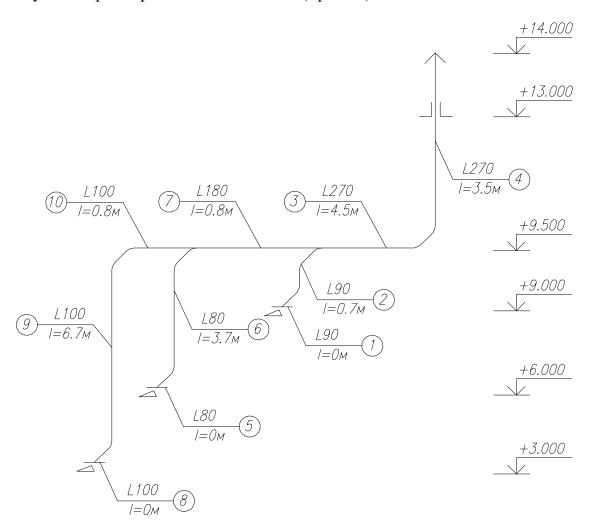


Рис. 3.3. Расчетная схема системы ВЕ1

Порядок расчета

Определяем располагаемое гравитационное давление для каждого этажа по формуле (3.9) при

$$\rho_{_{\rm H}} = \frac{353}{273+5} = 1,27 \ \ \text{кг/м}^3, \ \rho_{_{\rm B}} = \frac{353}{273+16} = 1,22 \ \ \text{кг/м}^3,$$
для 3 этажа $\Delta P_{e3} = 9,81\cdot5\cdot\left(1,27-1,22\right) = 2,45\,\Pi a,$

для 2 этажа $\Delta P_{e2} = 9,81 \cdot 8 \cdot (1,27-1,22) = 3,92 \,\Pi a$,

для 1 этажа $\Delta P_{e1} = 9,81 \cdot 11 \cdot (1,27-1,22) = 5,39 \,\Pi a.$

Расчет начинаем с наиболее неблагоприятно расположенного канала, то есть канала, имеющего наименьшее располагаемое давление, наименьшую нагрузку и протяженность. Таким каналом является канал с 3-го этажа.

При рекомендуемой скорости воздуха $\upsilon = 0.8$ м/с определяем сечение решетки (участок 1) и канала (участок 2) по формуле (3.1)

$$f_{\rm p} = \frac{90}{3600 \cdot 0.8} = 0.0315 \text{ m}^2.$$

По прил. 1 принимаем решетку типа АМН размером 200×200 мм с площадью живого сечения $f_{\rm p}=0{,}036~{\rm m}^2$ и канал по табл. 3.3 размером (1×1)к = (270×270) мм и с площадью сечения $f_{\rm K}=0{,}073~{\rm m}^2$.

Определяем скорость на участке 1 и 2 по формуле (3.3)

$$v_1 = \frac{90}{3600 \cdot 0.036} = 0.7 \text{ m/c},$$

$$v_2 = \frac{90}{3600 \cdot 0.073} = 0.34 \text{ m/c}.$$

Динамическое давление при скорости $\upsilon = 0.7$ м/с определяем по формуле

$$P_d = (v^2/2)\rho = (0,7^2/2) \cdot 1,22 = 0,3 \,\text{Ha}.$$

Определяем потери давления в решетке по формуле (3.4)

$$Z = 2, 2 \cdot 0, 3 = 0,66 \text{ }\Pi a.$$

Канал на участке 2 имеет прямоугольное сечение и поэтому для определения потерь давления на трение находим эквивалентный диаметр по формуле (3.2)

$$d_{_{9K}} = \frac{2 \cdot 270 \cdot 270}{(270 + 270)} = 270 \text{ MM}.$$

По прил. 5 по $d_{\text{эк}}$ и динамическому давлению P_d находим удельные потери R=0,014 Па/м.

В кирпичном канале на участке 2, имеющем большую шероховатость, чем стальные воздуховоды, потери на трение при K_3 =5 (табл. 3.6) и $\beta_{\rm m}$ = 1,42 (табл. 3.7) составят

$$\beta R\ell = 1,42 \cdot 0,014 \cdot 0,7 = 0,014 \,\Pi a.$$

Расчет на участках 3 и 4 ведется аналогично расчетам на участке 2. Результаты расчета заносим в табл. 3.11.

Таблица 3.11 Аэродинамический расчет системы BE1

	Aspodiniumi leekin pae lei enetembi BEI												
			Pa	змеры воздуховодо	В	ИЯ	на	Ħ	на а	ттов	ение	ые Па	на
Номер участка	Расход воздуха $L, \mathrm{M}^{3/\mathrm{q}}$	Длина участка ℓ , м	$f_{\scriptscriptstyle m T}$, ${ m M}^2$	$A{ imes}B,$ MM	$d_{\scriptscriptstyle extsf{3K}},$ мм	Скорость движения воздуха υ, м/с	Удельные потери на трение R , $\Pi a/M$	Поправка на шероховатость β_{m}	Потери на трение на участке $R\elleta_{ m m}$, Па	Сумма коэффициентов местных сопротивлений $\Sigma \zeta$	Динамическое давление P_d , Па	Потери на местные сопротивления Z , Па	Потери давления на участке $R\elleta_{ m m}+Z$, Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14
					-	3 этаж (Д	$\Delta P_{39T} = 2,4$	45 Πa)					
1	90	0	0,036	200×200 (1 реш.)	_	0,7	_	_	_	2,2	0,3	0,66	0,66
2	90	0,7	0,073	270×270	270	0,34	0,014	1,42	0,014	3	0,07	0,21	0,22
3	270	4,5	0,111	270×400	322	0,66	0,04	1,42	0,26	1,2	0,27	0,32	0,58
4	270	3,5	0,111	270×400	322	0,66	0,04	1,42	0,2	2,5	0,27	0,68	0,88
													∑2,34
				2 этаж ($\Delta P_{p(s)}$	$_{5+6+7)}=\Delta \lambda$	$P_{e2} - \Delta P_{(3)}$	$_{+4)y^{4}}=3,9$	2 - (0,58)	+0,88)=2	2,46 ∏a)			
5	80	0	0,018	200×100 (1реш.)	-	1,24	-	-	-	2,2	0,94	2,07	2,07
6	80	3,7	0,073	270×270	270	0,3	0,011	1,42	0,06	3,2	0,06	0,19	0,25
7	180	0,8	0,073	270×400	322	0,45	0,018	1,42	0,02	0,6	0,13	0,08	0,1
													Σ 2,33
	1 этаж ($\Delta P_{p(8+9+10)} = \Delta P_{e1} - \Delta P_{(3+4+7)} = 5,39 - (0,58+0,88+0,1) = 3,83 \Pi a$)												
8	100	0	0,018	200×100 (1 реш.)		1,54				2,2	1,45	3,19	3,19
9	100	6,7	0,073	270×270	270	0,38	0,016	1,42	0,15	1,2	0,09	0,11	0,26
10	100	0,8	0,073	270×270	270	0,38	0,06	1,42	0,02	2,85	0,09	0,26	0,28
													Σ 3,73

Для подсчета коэффициентов местных сопротивлений составляем ведомость местных сопротивлений, предварительно определив размеры сечений остальных участков.

Ведомость местных сопротивлений

ведомость местных сопротивлении	
1, 5, 8 участки Решетка (табл. ПЗ.1)	ζ=2,2
2 участок Колено 90°, 2 шт. (табл. ПЗ.1) Тройник на ответвление (табл. ПЗ.6) $L_{\rm o2}/L_{\rm c3} = 90/270 = 0.33$ $f_{\rm o2}/f_{\rm c3} = 0.038/0.111 = 0.34$ $f_{\rm n7}/f_{\rm c3} = 0.073/0.111 = 0.66$	$\zeta = 2.1, 2 = 2,4$ $\zeta = 0,6$
$J_{\Pi}//J_{C3} = 0.07570,111 = 0.00$	$\sum \zeta = 3$
3 участок Колено 90°	ζ=1,2
4 участок	
Колено 90° Зонт (табл. ПЗ.1)	$\zeta = 1,2$ $\zeta = 1,3$ $\Sigma \zeta = 2,5$
6 участок	$7 - 2 \times 1 = 2 = 2 = 4$
Колено 90°, 2 шт. Тройник на ответвление (табл. ПЗ.6) $L_{o6}/L_{c7}=80/180=0,44$ $f_{o6}/f_{c7}=0,038/0,073=0,52$ $f_{\pi 10}/f_{c7}=0,038/0,073=0,52$	$\zeta = 2x1,2 = 2,4$ $\zeta = 0,8$
	$\sum \zeta = 3,2$
7 участок Тройник на проход $L_{\rm o2}/L_{\rm c3}=90$ / 270 = 0,33 $f_{\rm o2}/f_{\rm c3}=0{,}038$ / 0,111 = 0,34 $f_{\rm n7}/f_{\rm c3}=0{,}073$ / 0,111 = 0,66	$\zeta = 0,6$
9 участок Колено 90°	$\zeta = 1,2$
10 участок Колено 90°, 2 шт. Тройник на проход $L_{06}/L_{c7} = 80/180 = 0,44$ $f_{06}/f_{c7} = 0,038/0,073 = 0,52$ $f_{\pi 10}/f_{c7} = 0,038/0,073 = 0,52$	$\zeta=2\times1,2=2,4$ $\zeta=0,45$
Jiiiu, Je, 6,656, 6,675 6,52	$\Sigma \zeta = 2,85$

Потери на местные сопротивления Z, Π a, определяем по формуле (3.4) и результаты расчетов записываем в табл.3.11 (графа 13).

Определяем общие потери давления на тракте от вытяжной решетки (участок 1) до выхода из шахты (участок 4)

$$\Sigma \Delta P_{(1+2+3+4)} = 2,34 \text{ }\Pi a.$$

Определяем невязку по формуле

$$\frac{\Delta P_e - \Delta P_{\Sigma yq}}{\Delta P_e} \cdot 100 \% \le 10 \%, \qquad (3.10)$$

$$\frac{\Delta P_{e3} - \Delta P_{\Sigma(1+2+3+4)}}{\Delta P_{e3}} \cdot 100 = \frac{2,45-2,34}{2,45} = 4,5\% \le 10\% - \text{условие выполняется.}$$

На тракте движения воздуха из помещения 2 этажа до его выхода из шахты участки 3 и 4 уже рассчитаны, поэтому расчетное давление для участков 5, 6, 7 составит

$$\Delta P_{\text{p (5+6+7)}} = \Delta P_{e2} - \Delta P_{(3+4)\text{yq}} = 3,92 - (0,58 + 0,88) = 2,46 \text{ }\Pi \text{a.}$$

Потери давления на участках 6 и 7 определяем аналогично расчетам на участке 2 и 3 и результаты заносим в табл. 3.11.

На участках 6 и 7 потери давления составили

$$\Delta P_{1(6+7)} = 0,25+0,1=0,26$$
 $\Pi a.$

Следовательно, для полной увязки потерь давления в решетке необходимо израсходовать $\Delta P_{_{1}\mathrm{p}}=2,46-0,26=2,2$ Па. Зная коэффициент местного сопротивления решетки $\zeta=2,2$, определяем необходимую скорость в живом сечении решетки и площадь живого сечения решетки

$$\upsilon = 2 \cdot \Delta P_{\rm p} / (\varsigma \cdot \rho) = 2 \cdot 2, 2 / (2, 2 \cdot 1, 22) = 1,64 \text{ m/c},$$

$$f_{\rm p} = 80 / (3600 \cdot 1,64) = 0,014 \text{ m}^2.$$

По прил. 1 принимаем решетку типа АМН размером 200×100 мм с площадью живого сечения $f_{\rm p} = 0{,}018~{\rm m}^2$.

$$\upsilon_{p} = \frac{80}{3600 \cdot 0,018} = 1,24 \text{ m/c}.$$

$$P_{d} = \left(\upsilon^{2}/2\right)\rho = \left(1,24^{2}/2\right) \cdot 1,22 = 0,94 \text{ \Pia}.$$

$$Z = 2,2 \cdot 0.94 = 2,07 \text{ \Pia}.$$

Определяем общие потери давления на участках 5,6,7

$$\sum \Delta P_{(5+6+7)} = 2,33 \,\Pi a.$$

Определяем невязку по формуле (3.8)

$$\frac{\Delta P_{\text{p (5+6+7)}} - \sum \Delta P_{\text{(5+6+7)}}}{\Delta P_{e3}} \cdot 100 = \frac{2,46 - 2,33}{2,46} = 5,3 \% \le 10 \% - \text{условие выполняется.}$$

Расчет участков 8, 9, 10 ведем аналогично и результаты расчета заносим в табл. 3.11.

Пример 3.4

Выполнить аэродинамический расчет системы естественной вентиляции, представленной на рис. 3.4. Величины расходов воздуха L, м 3 /ч, и длин ℓ , м, участков представлены на схеме. Воздуховоды системы выполнены из листовой стали. В системе использованы воздухозаборные решетки типа P (см. табл. 2.2).

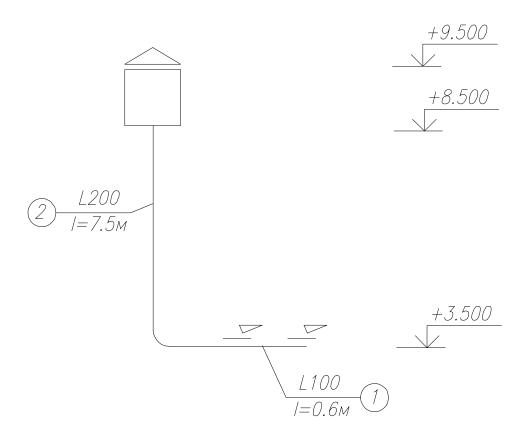


Рис. 3.4. Расчетная схема системы ВЕ2

Порядок расчета

Определяем располагаемое гравитационное давление по формуле (3.7) при

$$\rho_{\text{H}} = \frac{353}{273 + 5} = 1,27 \text{ KG/M}^3, \ \rho_{\text{B}} = \frac{353}{273 + 16} = 1,22 \text{ KG/M}^3;$$

$$\Delta P_{\text{e}} = 9,81 \cdot 6 \cdot (1,27 - 1,22) = 2,94 \text{ \Pia}.$$

При рекомендуемой скорости воздуха $\upsilon = 1$ м/с определяем сечение канала по формуле (3.1) и по табл. 3.4

$$f_{\rm Pl} = \frac{100}{3600 \cdot 1} = 0,028 \text{ м}^2$$
, тогда $f_{\phi} = 0,03 \text{ м}^2$,

$$f_{\rm P2} = \frac{200}{3600 \cdot 1} = 0,056 \,\mathrm{m}^2$$
, тогда $f_{\phi} = 0,06 \,\mathrm{m}^2$,

Уточняем фактическую скорость на участках по формуле (3.3)

$$v_1 = \frac{100}{3600 \cdot 0.03} = 0.93 \text{ m/c}, \ v_2 = \frac{200}{3600 \cdot 0.06} = 0.93 \text{ m/c}.$$

Определяем динамическое давление на участках по формуле

$$P_d = (v^2/2)\rho = (0.93^2/2) \cdot 1.22 = 0.53$$
 Па.

По формуле (3.2) определяем эквивалентный диаметр

$$d_{_{9K}} = \frac{2 \cdot 150 \cdot 200}{(150 + 200)} \approx 180 \text{ mm}, \ d_{_{9K}} = \frac{2 \cdot 300 \cdot 200}{(300 + 200)} \approx 250 \text{ mm}.$$

По (прил. 5) по d_{9K} и динамическому давлению P_d находим удельные потери R, Па.

Для стальных воздуховодов потери на трение при K_9 =0,1 (табл. 3.6) и $\beta_{\rm m}$ = 0,986 (табл. 3.7) составят

$$\beta R\ell = 0.986 \cdot 0.09 \cdot 0.6 = 0.05 \text{ }\Pi a.$$

Результаты расчета заносим в табл. 3.12.

Таблица 3.12

Аэродинамический расчет системы ВЕ2

			Pas	меры воздуховод	, a 1	К,	β_{m}	κe	IbIX	Па		e	
Номер участка	Расход воздуха L , м 3 /ч	Длина участка ℓ , м	$f_{\mathtt{T}},\mathtt{M}^2$	$A \!\! imes \!\! B,$ MM	d _{эк} , ММ	Скорость движения воздуха м/с	Удельные потери на трение Па/м	Поправка на шероховатость	Потери на трение на участке $R\elleta_{\omega}$ Па	Сумма коэффициентов местных сопротивлений ∑ζ	Динамическое давление P_d ,	Потери на местные сопротивления Z , Па	Потери давления на участке $R\elleta_m+Z_n$ Па
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	100	0,6	0,03	150×200	180	0,93	0,09	0,986	0,05	3,5	0,53	1,9	1,95
2	200	7,5	0,06	300×200	250	0,93	0,06	0,986	0,44	0,77	0,53	0,41	0,85
													$\sum 2,8$

Для подсчета коэффициентов местных сопротивлений составляем ведомость местных сопротивлений.

Ведомость местных сопротивлений

1 участок

Первое боковое отверстие (табл. ПЗ.1)
$$F_{\text{отв}}/F_{\text{0}} = 0.0256/0.03 = 0.8$$

2 участок

Среднее боковое отверстие (проход) (табл. ПЗ.1)
$$\zeta = -0.2$$

$$F_{\text{отв}}/F_1 = 0.0256 / 0.06 = 0.4$$

$$L_o/L_c = 100 / 200 = 0.5$$
 Отвод 90° (табл. ПЗ.7)
$$\zeta = 0.33$$
 Дефлектор ЦАГИ (табл. ПЗ.1)
$$\zeta = 0.64$$

$$\Sigma \zeta = 0.77$$

Потери на местные сопротивления Z, Π a, определяем по формуле (3.4) и результаты расчетов записываем в табл. 3.12 (графа 13).

Определяем невязку по формуле (3.8)

$$\frac{\Delta P_e - \Delta P_{\Sigma(1+2)}}{\Delta P_e} \cdot 100 = \frac{2,94 - 2,8}{2,94} = 4,8 \% \le 10 \%$$

условие выполняется.

Контрольные вопросы

- 1. Для чего нужен аэродинамический расчет воздуховодов? После каких расчетов он выполняется?
 - 2. Что называют магистральным направлением?
 - 3. Какова последовательность аэродинамического расчета?
- 4. Каким образом осуществляется увязка ответвления и магистрального направления при аэродинамическом расчете воздуховодов?
- 5. В чем заключаются особенности аэродинамического расчета приточных и вытяжных систем с механическим побуждением движения воздуха?
- 6. В чем заключаются особенности аэродинамического расчета вытяжных систем с естественным побуждением движения воздуха?

4. ОБОРУДОВАНИЕ ВЕНТИЛЯЦИОННЫХ СИСТЕМ

4.1. Устройства для воздухозабора и воздухоудаления

Поступление наружного воздуха в помещения осуществляется через устройства (узлы) воздухозабора. Узлы воздухозабора включают, как правило, жалюзийные решетки с неподвижными жалюзи и клапаны (заслонки) для предотвращения поступления наружного воздуха в помещения при неработающих приточных установках.

Удаление внутреннего воздуха из помещения осуществляется через устройства (узлы) воздухоудаления, которые также включают жалюзийные решетки с неподвижными и подвижными жалюзи и клапаны (заслонки) для регулировки расхода удаляемого внутреннего воздуха из помещения и предотвращения поступления наружного воздуха при неработающих вытяжных установках.

4.1.1. Подбор жалюзийных решеток

Жалюзийные решетки устанавливают в проемах стен зданий, в отдельно стоящих воздухозаборных шахтах, а также в оконных проемах с таким условием, чтобы низ решетки располагался на высоте не ниже 2 м от уровня земли [8]. Для применения в узлах воздухозабора могут быть рекомендованы штампованные решетки типа СТД (рис. 4.1).

Подбор жалюзийных решеток состоит в определении их количества, габаритного размера проема в строительных конструкциях для установки решеток и в расчете аэродинамического сопротивления при проходе воздуха через решетки.

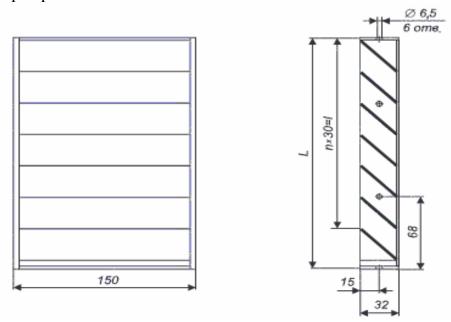


Рис. 4.1. Штампованная жалюзийная решётка

Методика подбора жалюзийных решеток

1. Находят необходимую площадь живого сечения решеток $\sum f$, м², по формуле

$$\sum f = \frac{L}{3600 \cdot v_{\text{pek}}},\tag{4.1}$$

где $\upsilon_{\text{пек}}$ — рекомендуемая скорость воздуха, принимается равной 4—6 м/с;

L — расчетный расход воздуха, м 3 /ч.

В зависимости от L и $\sum f$ по табл. 4.1 подбирают тип, стандартные размеры решетки и их количество.

2. Уточняют скорость воздуха в живом сечении решеток υ , м/с, по формуле

$$v = \frac{L}{(3600 \cdot \sum f)}. (4.2)$$

3. Рассчитывают аэродинамическое сопротивление ΔP , Па, при проходе воздуха через решетки по формуле

$$\Delta P = \frac{\varsigma \cdot \upsilon^2 \cdot \rho}{2},\tag{4.3}$$

где ς – коэффициент местного сопротивления решетки (табл. 4.1);

 ρ – плотность наружного воздуха, кг/м³.

4. Определяют, исходя из конструктивных соображений и количества жалюзийных решеток, размеры проема в строительных конструкциях.

Таблица 4.1 Технические данные и основные размеры жалюзийных неподвижных воздухозаборных решеток типа СТД

Тип решетки	Рекомендуемый расход воздуха, м ³ /ч	Живое сечение, м ²	Коэффициент местного сопротивления	Разм м	. ,	Масса, кг
СТД 5288	350–1000	0,05	1,2	150	490	0,97
СТД 5289	450–1300	0,06	1,2	150	580	1,13

Пример 4.1

Дано: Для системы П1 подобрать жалюзийную решетку. Данные для расчета приведены в примере 3.1.

Порядок расчета

1. Находим необходимую площадь живого сечения решеток $\sum f$ по формуле (4.1)

$$\sum f = \frac{4151}{3600 \cdot 6} = 0.192 \,\mathrm{m}^2.$$

2. По (табл. 4.1) подбираем решетку СТД 5288 с $\sum f$ =0,05 м 2 и определяем количество решеток по формуле

$$n = \frac{0.192}{0.05} = 3.84$$
 IIIT.

Принимаем к установке 4 решетки СТД 5288 с размерами 150×490 мм с суммарной площадью живого сечения решеток $\sum f = 0.05 \cdot 4 = 0.2 \text{ m}^2$.

3. Уточняем скорость воздуха в живом сечении решетки υ , м/с, по формуле (4.2)

$$v = \frac{4151}{3600 \cdot 0.2} = 5.8 \text{ m/c}.$$

4. Рассчитываем аэродинамическое сопротивление ΔP , Πa , при проходе воздуха через решетки по формуле (4.3)

$$\Delta P = \frac{1, 2 \cdot 5, 8^2 \cdot 1, 21}{2} = 24, 4 \text{ \Pia.}$$

4.1.2. Подбор утепленных воздушных клапанов

Клапаны воздушные утепленные типа КВУ (рис. 4.2) применяют в приточных установках для отсечения наружного воздуха при выключении вентилятора.

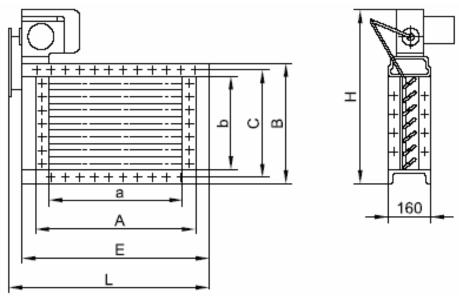


Рис. 4.2. Клапан утепленный КВУ

Методика подбора клапана воздушного утепленного

- 1. По заданному расходу воздуха выбирают по табл. 4.2 тип клапана, его габаритные размеры и живое сечение для прохода воздуха $\sum f$, м².
 - 2. Находят скорость воздуха в живом сечении υ, м/с, по формуле (4.2).
 - 3. Определяют аэродинамическое сопротивление по формуле (4.3).

Таблица 4.2 Технические данные и основные размеры воздушных клапанов

	й а,	<u>و</u>		Размеры, мм								
Тип клапана	Рекомендуемый расход воздуха, тыс. $M^3/4$	Площадь живого сечения, м ²	A	В	C	Н	L	а	b	E	Масса, кг	
КВУ 600×1000	3,5–10	0,57	1100	690	160	915	1200	1000	610	1155	38	
КВУ 1600×1000	10 - 30	1,48	1100	1583	160	1808	1200	1000	1503	1155	79	
КВУ 1800×1000	30–60	1,85	1100	1953	160	2178	1200	1000	1873	1155	95	
КВУ 2400×1000	35–50	2,4	1500	1953	160	2178	1650	1400	1873	1553	115	
КВУ 1800×1400	25-50	2,6	1500	2508	160	2728	1650	1400	2428	1155	119	
КВУ 2400×1400	50-75	3,4	1100	2508	160	2728	1200	1000	2428	1555	148	

Примечания:

- привод исполнительный механизм МЭО 40/63–0,25 (МЭО 16/63–0,25);
- потери давления для воздушных клапанов КВУ равны 25 Па.

Пример 4.2

Дано: Для системы П1 подобрать утепленный клапан КВУ. Данные для расчета приведены в примере 3.1.

Порядок расчета

- 1. По табл. 4.2 подбираем клапан КВУ 600×1000 с живым сечением $\sum f = 0,57 \text{ м}^2$.
- 2. Уточняем скорость воздуха в живом сечении клапана υ, по формуле (4.2)

$$v = \frac{4151}{3600 \cdot 0.57} = 2 \text{ m/c}.$$

3. Аэродинамическое сопротивление для воздушных клапанов КВУ равно 25 Па.

4.1.3. Подбор зонтов

Зонты применяются в системах вытяжной вентиляции с естественным или механическим побуждением.

Назначение зонтов – предотвращение попадания атмосферных осадков в вентиляционные шахты.

Зонты изготавливаются по конфигурации колпака – круглые и прямоугольные (рис. 4.3, 4.4).

Подбор зонта состоит в определении его типоразмера, принимаемого по размеру трубы и расчета аэродинамического сопротивления по формуле (4.3).

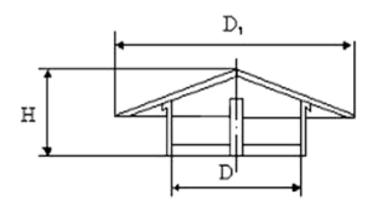


Рис. 4.3. Зонт круглый

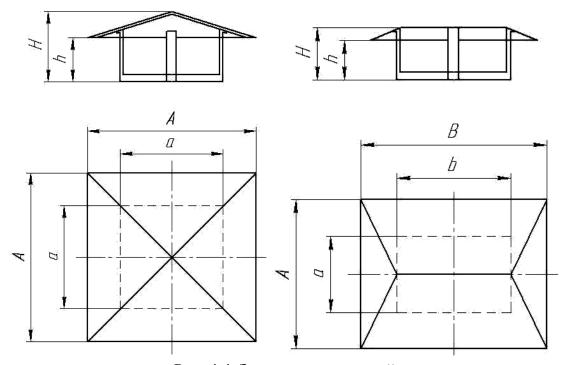


Рис. 4.4. Зонт прямоугольный

Таблица 4.3 Технические данные и основные размеры круглых зонтов (серия 5.904–51)

Тин заита	Pa	змеры, мм		Масса, кг	
Тип зонта	Д (воздуховода)	Д1	H	Macca, Ki	
3K.00.000	200	350	240	2,02	
3K.00.000-01	250	450	257	2,85	
3K.00.000-02	315	550	275	4	
3K.00.000-03	400	700	400	7,1	
3K.00.000-04	450	800	415	8,4	
3K.00.000-05	500	900	480	10,1	
3K.00.000-06	630	1130	523	14	
3K.00.000-07	710	1300	550	17,7	
3K.00.000-08	800	1450	820	33,7	
3K.00.000-09	1000	1800	970	48,3	
3K.00.000-10	1250	2250	1055	71,6	

Таблица 4.4 Технические данные и основные размеры прямоугольных зонтов (серия 5.904–51)

		Размеры, мм								
Тип зонта	вент. і	шахта	A	В	Н	h	Macca,			
	а	b	A	D	11	n	КГ			
3П.00.000	250	250	450	450	240	150	4,5			
3П.00.000-01	400	400	720	720	376	250	8,7			
3П.00.000-02	500	500	900	900	400	250	12			
3П.00.000-03	800	800	1440	1440	763	538	31,5			
3П.00.000-04	1000	1000	1800	1800	811	538	58,6			
3П.00.000-05	250	400	450	720	400	250	7,2			
3П.00.000-06	500	800	900	1440	930	638	27			
3П.00.000-07	800	1000	1440	1800	995	638	53,5			

Подбор зонта состоит в определении его типоразмера по (табл.4.3, 4.4), принимаемого по размеру (диаметру) трубы или шахты, и расчета аэродинамического сопротивления по формуле (4.3) при коэффициенте местного сопротивления $\zeta = 1,3$.

Пример 4.3

Дано: Для системы В1 подобрать зонт. Данные для расчета приведены в примере 3.2.

Порядок расчета

- 1. По табл. 4.3, в зависимости от диаметра трубы 500 мм (табл. 3.9) принимаем зонт 3К.00.000–05.
 - 2. Определяем аэродинамическое сопротивление по формуле (4.3)

$$\Delta P = \frac{1,3 \cdot 7,2^2 \cdot 1,22}{2} = 41,1 \text{ }\Pi \text{a} .$$

4.1.4. Подбор дефлекторов

Дефлекторами называются устройства, позволяющие усилить действие ветра для создания разрежения, используемого в вытяжных канальных системах естественной вентиляции. Обычно они устанавливаются на концах труб или шахт. Их работа основана на использовании энергии потока ветра, который, обтекая поверхность дефлектора, создает возле выпуклой его внешней части периметра разрежение, что и усиливает вытяжку воздуха из помещения. Дефлекторы выполняют в виде различных конструкций, но наибольшее распространение получили дефлекторы ЦАГИ круглой и квадратной формы (рис. 4.5).

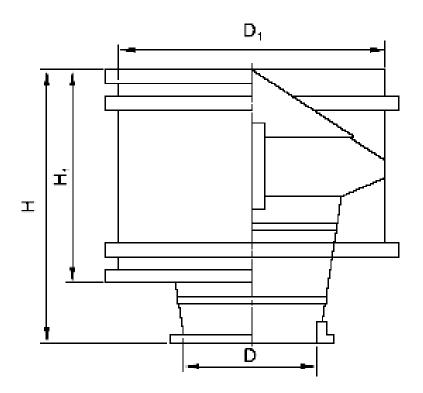


Рис. 4.5. Дефлектор круглый ЦАГИ

Таблица 4.5 Технические данные и основные характеристики дефлекторов ЦАГИ

Диаметр	Высота	Диаметр	Высота	Масса, кг
воздуховода D , мм	H, mm	D_1 , MM	H_1 , mm	1,14004, 141
1	2	3	4	5
100	170	200	120	1,6
125	210	250	150	2,2
140	240	280	170	2,6
160	270	320	190	3,1
180	300	360	215	3,8
200	340	400	240	4,7
250	425	480	285	6,4
280	450	530	320	7,5
315	540	615	370	10,4
400	640	750	450	15,5
500	840	990	575	27,6
630	1010	1190	685	41,7
710	1120	1320	790	67,0
800	1320	1550	930	90,0
900	1500	1770	980	111,3
1000	1705	2020	1230	153,6
1250	2125	2500	1500	230,0

Методика подбора дефлектора

1. Рассчитывают полное давление, создаваемое дефлектором в сети по формуле

$$\Delta P_{_{\rm I\!I}} = \Delta P_{_{\rm I\!P}} + \Delta P_{_{\rm B}} \pm \Delta P_{_{\rm I\!I}36} - \left(R\ell + Z\right), \, \Pi a, \tag{4.4}$$

где $\Delta P_{\rm rp}$ — гравитационное давление в помещении, Па:

$$\Delta P_{\rm rp} = hg(\rho_{\rm H} - \rho_{\rm B}); \qquad (4.5)$$

здесь h — разность отметок выхода воздуха в атмосферу и центра вытяжного отверстия, м;

 $ho_{_{\rm H}},
ho_{_{B}}$ — плотность наружного, принимаемого согласно [8] не ниже +5 °C, и внутреннего воздуха, кг/м³;

 $\Delta P_{_{\rm B}}$ — давление, создаваемое ветром, Па;

$$\Delta P_{\rm R} = k v^2 \rho_{\rm H} / 2; \tag{4.6}$$

здесь k – аэродинамический коэффициент дефлектора (для круглых дефлекторов ЦАГИ ζ =0,4);

 v^2 — расчётная скорость ветра, м/с;

 $\Delta P_{\text{изб}}$ — избыточное давление, принимаемое при дисбалансе механической вентиляции, Па;

 $(R\ell + Z)$ — потери давления в воздуховодах, присоединенных к дефлектору, Π а.

2. Определяют скорость в горловине дефлектора по формуле

$$v_{_{\rm I}} = 1.41 \sqrt{\Delta P_{_{\rm I}} / (\zeta_{_{\rm BX}} + \zeta_{_{\rm 33M}} + 1.2) \rho_{_{\rm B}})}, \, \text{m/c},$$
 (4.7)

где $\zeta_{\text{вx}}$ — коэффициент местного сопротивления входа в вентиляционную шахту, $\zeta_{\text{вx}}$ = 0,5;

 $\zeta_{_{3 \text{ам}}}$ — коэффициент местного сопротивления для потерь на трение в вентиляционной шахте

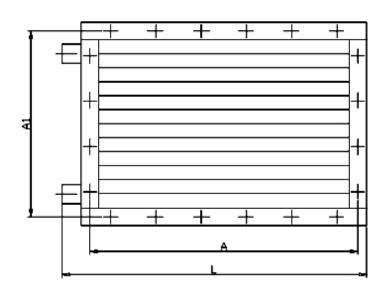
$$\zeta_{\text{\tiny 3AM}} = \lambda \ell / d$$
;

здесь λ – коэффициент сопротивления трения материала шахты;

 ℓ — длина шахты, м;

d – диаметр шахты, м.

Определяем предварительный диаметр D, м, дефлектора по формуле


$$D = 1.88 \cdot 10^{-2} \sqrt{L/v_{\pi}}, \qquad (4.8)$$

где L – производительность дефлектора, м 3 /ч.

3. Принимают по табл. 4.5 ближайший номенклатурный диаметр (номер) дефлектора с расхождением до $10\,\%$ в сторону уменьшения и до $20\,\%$ в сторону увеличения.

4.2. Подбор калорифера

Важнейшей функцией системы вентиляции является подготовка приточного воздуха. Зимой низкая температура наружного воздуха не позволяет загонять его в помещение без подогрева. В связи с этим одним из основных элементов вентиляционной системы является калорифер (рис. 4.6), который обеспечивает нагрев поступающего приточного воздуха до необходимой температуры в холодное время года.

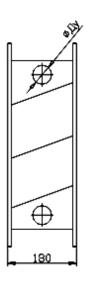


Рис. 4.6. Калорифер КСк

Таблица 4.6 Технические данные и основные характеристики калориферов КСк (ТУ 4863–026–11865045–03)

Марка калорифера	Значение коэффициента <i>А</i>	Площадь поверхности теплообмена, м ²	Площадь фронтального сечения для прохода воздуха, м ²	Площадь сечения для прохода теплоносителя, м²		баритн вмеры,	MM	Масса, кг
					A_1	A	L	
КСк-3-6	12,12	13,26	0,267		575	574	650	34,8
КСк-3-7	12,97	16,34	0,329		575	699	775	40
КСк-3-8	13,83	19,42	0,392	0,000846	575	824	900	45,9
КСк-3-9	14,68	22,5	0,455		575	949	1025	51,7
КСк-3-10	16,39	28,66	0,581		575	1199	1275	62,4
КСк-3-11	34,25	83,12	1,66	0,002576	1075	1703	1832	176
КСк-3-12	64,29	125,27	2,448	0,003881	1575	1703	1832	259
КСк-4-6	13,01	17,42	0,267		575	574	650	40,2
КСк-4-7	13,87	21,47	0,329		575	699	775	46,7
КСк-4-8	14,72	25,52	0,392	0,001112	575	824	900	53,7
КСк-4-9	15,58	29,57	0,455		575	949	1025	61,5
КСк-4-10	17,29	37,66	0,581		575	1199	1275	74,9
КСк-4-11	37,15	110,05	1,66	0,00341	1075	1703	1832	223
КСк-4-12	71,19	166,25	2,448	0,005151	1575	1703	1832	331

Методика подбора калорифера

1. Тепловой поток Q, Вт, который необходимо передать воздуху, определяют по формуле

$$Q = 0.278 L \rho_{\rm H} c_{\rm p} (t_{\rm K} - t_{\rm H}) , \qquad (4.9)$$

где L – объемный расход воздуха, м³/ч;

 ρ – плотность воздуха, кг/м³;

 $t_{\rm k}$ — конечная температура воздуха, °C;

 $t_{\rm H}$ — начальная температура воздуха, °С.

2. Определяют расход нагреваемого воздуха G, кг/ч, по формуле

$$G = L\rho. (4.10)$$

3. Задаваясь массовой скоростью движения теплоносителя ($\upsilon \rho$) = 3...10 м/с, определяют ориентировочную площадь живого сечения калориферной установки, м², по формуле

$$f_{\mathsf{x}} = \frac{G}{3600 \cdot (\mathsf{v}\mathsf{p})}.\tag{4.11}$$

По табл. 4.6 принимают тип калориферов с площадью фронтального сечения по воздуху $f_{\rm B}$, м², и их количество.

4. Определяют фактическую массовую скорость воздуха ($\upsilon \rho$), м/с, по формуле

$$(\upsilon \rho)_{\phi} = \frac{G}{3600 \cdot f_{T}}.$$
(4.12)

5. Находят массовый расход воды, кг/ч, по формуле

$$G_{W} = \frac{Q}{0,278 \cdot c \cdot (t_{WH} - t_{WK})} , \qquad (4.13)$$

где c — теплоемкость воды, (4,19 кДж/(кг·К));

 t_{wk} — конечная температура воды, °С;

 t_{wh} — начальная температура воды, °С.

6. Скорость движения горячей воды по трубам теплообменника, м/с, определяют по формуле

$$w = \frac{G_w}{3600 \cdot f_w \cdot \rho_w},\tag{4.14}$$

где ρ_w — плотность воды, кг/м³, (ρ_w =1000 кг/м³);

 f_w — площадь сечения для прохода воды (табл. 4.6), м².

- 7. В зависимости от массовой скорости ($\upsilon \rho$) и скорости движения воды w по прил. 6 определяют коэффициент теплопередачи и аэродинамическое сопротивление.
- 8. Среднюю разность температур между теплоносителями определяют по формуле

$$\Delta t_{\rm cp} = \frac{t_{\rm wH} + t_{\rm wK}}{2} - \frac{t_{\rm H} + t_{\rm K}}{2},\tag{4.15}$$

где $t_{\rm K}$ — конечная температура воздуха, °С;

 $t_{\rm H}$ — начальная температура воздуха, °С.

9. Требуемую площадь теплообмена, м², определяют по формуле

$$F_{\rm Tp} = \frac{Q_{\rm BO3}}{K \cdot \Delta t_{\rm cp}} \,. \tag{4.16}$$

10. Проверяют условие: между располагаемой поверхностью $F_{\rm p}$ (предварительно выбранным воздухонагревателем) и требуемой поверхностью $F_{\rm rp}$ запас поверхности теплообмена не должен превышать 20 %:

$$\frac{F_{\rm p} - F_{\rm Tp}}{F_{\rm Tp}} \cdot 100 \le 20 \% \,. \tag{4.17}$$

11. Гидравлическое сопротивление калорифера, Па, определяют по формуле

$$\Delta P_w = A \cdot w^2 \,, \tag{4.18}$$

где A — коэффициент, принимаемый по табл. 4.6;

w – скорость движения воды, м/с.

Пример 4.4

Подобрать воздухонагревательную установку из калориферов типа КСк для системы П1 (см. пример 3.1) при теплоносителе перегретая вода. Определить сопротивление установки движению воздуха и теплоносителя.

Дано: параметры теплоносителя: $t_{\rm wh} = 130~{\rm °C}$, $t_{\rm wk} = 70~{\rm °C}$ (по заданию); параметры воздуха: $t_{\rm H} = -29~{\rm °C}$ (температура наружного воздуха), $t_{\rm k} = 16~{\rm °C}$ (температура приточного воздуха).

Порядок расчета

1. Тепловой поток Q, Вт, который необходимо передать воздуху, определяем по формуле (4.9)

$$Q = 0.278 \cdot 4151 \cdot \left(\frac{353}{273 - 29}\right) \cdot 1 \cdot (16 + 29) = 75297,1 \text{ Bt.}$$

2. Определяем расход нагреваемого воздуха G по формуле (4.10)

$$G = 4151 \cdot 1,45 = 6019 \text{ KG/y}.$$

3. Определяем ориентировочную площадь живого сечения калориферной установки по формуле (4.11) при массовой скорости ($\upsilon \rho$) = 8 м/с

$$f_{\text{x}} = \frac{6019}{3600 \cdot 8} = 0.21 \text{ m}^2.$$

По табл. 4.6 принимаем один калорифер КСк-3-6 с площадью фронтального сечения по воздуху $f_{\rm B}$ = 0,267 м².

4. Определяем фактическую массовую скорость воздуха ($\upsilon \rho$), м/с, по формуле (4.12)

$$(\upsilon \rho)_{\phi} = \frac{6019}{3600 \cdot 0.267} = 6.3 \text{ m/c}.$$

5. Находим массовый расход воды по формуле (4.13)

$$G_w = \frac{75297,1}{0,278 \cdot 4,19 \cdot (130 - 70)} = 1077 \text{ кг/ч}.$$

6. Скорость движения горячей воды по трубам теплообменника определяют по формуле (4.14)

$$w = \frac{1077}{3600 \cdot 0,000846 \cdot 1000} = 0,35 \text{ m/c}.$$

7. По прил. 6 определяем коэффициент теплопередачи и аэродинамическое сопротивление в зависимости от массовой скорости ($\upsilon \rho$) = 6,3 м/с и скорости движения воды w = 0.35 м/с.

$$K = 56.9 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}); \qquad \Delta P_a = 186.73 \text{ \Pia}.$$

8. Среднюю разность температур между теплоносителями определяем по формуле (4.15)

$$\Delta t_{\rm cp} = \frac{130 + 70}{2} - \frac{(-29) + 18}{2} = 105,5 \, {}^{\circ}{\rm C}.$$

9. Требуемую площадь теплообмена определяем по формуле (4.16)

$$F_{\rm rp} = \frac{75297,1}{56,9 \cdot 105,5} = 12,54 \text{ m}^2.$$

10. Проверяем условие (4.17)

$$\frac{13,26-12,54}{12,54} \cdot 100 = 5,7 \le 20 \%.$$

11. Гидравлическое сопротивление калорифера определяем по формуле (4.18)

$$\Delta P_w = 12,12 \cdot 0,35^2 = 1,49 \, \Pi a.$$

4.3. Подбор фильтра

Воздушные фильтры в вентиляционных системах служат для очистки приточного (а иногда и вытяжного) воздуха от примесей.

Конструкция, материал и другие параметры фильтра зависят от типа загрязнения воздуха и требований к его очистке. Различают три основных класса фильтров:

- грубой очистки (задерживает частицы более 10 мкм);
- тонкой очистки (задерживает частицы более 1 мкм);
- особо тонкой очистки (задерживает частицы до 0,1 мкм).

Наибольшее распространение получили фильтры ячейковые ФяР, ФяП, ФяУ, ФяВ, панельные рулонные ФРУ, ФРП (рис. 4.7).

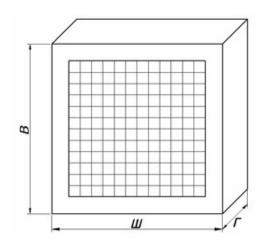


Рис. 4.7. Фильтр ячейковый

Ячейковые фильтры состоят из разборного корпуса, выполненного из оцинкованной стали, опорных решеток и фильтрующих элементов. Фильтрующие элементы представляют собой набор металлических тканных гофрированных сеток, винипластовых сеток, слоев пенополиуретана или стекловолокна.

Технические данные фильтров приведены в работах [2, 15] или в прил. 7.

Методика подбора фильтра

- 1. По прил. 7 выбирают тип фильтра.
- 2. Определяют площадь рабочего сечения фильтра F, M^2 , по формуле

$$F = \frac{L}{L_{\rm H}}.\tag{4.19}$$

где $L_{\rm H}$ – удельная воздушная нагрузка, м³/(м²·ч).

3. Определяют количество ячеек фильтра, шт., по формуле

$$n = \frac{F}{f},\tag{4.20}$$

где f – площадь сечения одной ячейки, M^2 , принимают по прил. 7.

4. Уточняют воздушную нагрузку фильтра по формуле

$$L_{\Phi} = \frac{L}{n \cdot f} \,. \tag{4.21}$$

5. Определяют начальное сопротивление фильтра $\Delta P_{_{\rm H}}$, Па, по формуле

$$\Delta P_{\rm H} = \Delta P_{\rm H}^{\rm H} (L_{\phi} / L_{\rm H})^{1.5}, \tag{4.22}$$

где $\Delta P_{\scriptscriptstyle \rm H}^{\scriptscriptstyle \rm H}$ — начальное номинальное сопротивление фильтра, Па, принимаемое по прил.7;

6. Определяют конечное сопротивление фильтра, Па, по формуле

$$\Delta P_{\scriptscriptstyle \rm K} = \Delta P_{\scriptscriptstyle \rm H} + \Delta P \,, \tag{4.23}$$

где ΔP — превышение сопротивления фильтра над начальным, Па, (прил. 7).

7. Определяют продолжительность работы фильтра, ч, по формуле

$$\tau = \frac{10^3 \cdot q_p}{L_{\phi} \cdot \eta \cdot c_{_{\rm H}}},\tag{4.24}$$

где q_p – удельная пылеемкость, г/м², (прил. 7);

 η – степень очистки, %, (прил. 7);

 $c_{\rm p}$ — начальная допустимая запыленность очищаемого воздуха, мг/м³, (прил. 7).

Пример 4.5

Подобрать фильтр для приточной установки П1 (см. пример 3.1).

- 1. По прил. 7 выбираем фильтр ФяРБ.
- 2. Определяем площадь рабочего сечения фильтра F по формуле (4.19)

$$F = \frac{4151}{7000} = 0,593 \text{ m}^2$$
.

3. Определяем количество ячеек фильтра по формуле (4.20)

$$n = \frac{0,593}{0,35} = 1,7 \approx 2 \text{ m.}$$

4. Уточняем воздушную нагрузку фильтра по формуле (4.21)

$$L_{\Phi} = \frac{4151}{2 \cdot 0.35} = 5930 \text{ m}^3/(\text{m}^2 \cdot \text{ч}).$$

5. Определяем начальное сопротивление фильтра $\Delta P_{_{\mathrm{H}}}$ по формуле (4.22)

$$\Delta P_{_{\rm H}} = 60(5930 \, / \, 7000)^{1,5} = 47 \, \Pi a \, .$$

6. Определяют конечное сопротивление фильтра по формуле (4.23)

$$\Delta P_{K} = 47 + 90 = 137 \; \Pi a$$
.

7. Определяют продолжительность работы фильтра по формуле (4.24)

$$\tau = \frac{10^5 \cdot 2400}{5930 \cdot 80 \cdot 10^{-2} \cdot 1} = 506 \text{ y}.$$

Принимаем к установке фильтр ФяР592×592×48.

4.4. Подбор вентилятора

Производительность вентилятора, $m^3/ч$, для приточной камеры определяют с учетом потерь в воздуховодах по формуле

$$L = 1, 1 \cdot L_{c},$$
 (4.25)

Общие потери давления определяют по формуле

$$\Delta P = 1, 1(\Delta P_{\text{KD}} + \Delta P_{\text{KJ}} + \Delta P_{\phi} + \Delta P_{\kappa \text{AJ}} + \Delta P_{c}), \Pi a, \qquad (4.26)$$

где $\Delta P_{\rm жp}$ — потери давления в жалюзийной решётке, Па;

 $\Delta P_{_{\rm KJ}}$ — потери давления в утепленном клапане, Па;

 $\Delta P_{\text{кал}}$ – потери давления в калорифере, Па;

 ΔP_{ϕ} — потери давления в фильтре, Па;

 $\Delta P_{\rm c}$ — потери давления в сети, Па.

По прил. 8 подбирают вентилятор и выписывают его характеристики (типоразмер электродвигателя, мощность, частоту вращения рабочего колеса, массу).

Пример 4.6

Подобрать вентилятор для приточной установки П1 (см. пример 3.1). \mathcal{L}_{AHO} : $\Delta P_{\text{жp}} = 16,7$ Па (см. пример 4.1), $\Delta P_{\text{кл}} = 25$ Па (см. пример 4.2), $\Delta P_{\text{кал}} = 186,7$ Па (см. пример 4.4), $\Delta P_{\phi} = 137$ Па (см. пример 4.5), $\Delta P_{c} = 110,3$ Па (см. пример 3.1), $L_{c} = 4151$ м³/ч.

Определяем производительность вентилятора, $M^3/4$, по формуле (4.25)

$$L = 1, 1 \cdot 4151 = 4566$$
 м³/ч.

Полное давление вентилятора Р, Па, определяем по формуле (4.26)

$$\Delta P = 1,1(16,7+25+137+186,7+110,3) = 523,3 \,\mathrm{\Pi a}.$$

Принимаем радиальный стальной центробежный вентилятор BP86-77-4. КПД вентилятора = 0,77, электродвигатель типа AИМ112M2 мощностью N = 7,5 кВт и частотой вращения 2850 об/мин. Масса вентилятора с двигателем m = 121 кг.

Таблица 4.7 Габаритные и присоединительные размеры вентиляторов BP 80-75 1-е исполнение

Номер вент.	A	A_1	A_2	A_3	A_4	a_1	a_2	L_{\max}	I	h	L_1	L_2
1	2	3	4	5	6	7	8	9	10	11	12	13
2,5	162	100	100	205	205	175	175	625	140	320	35	300
3,15	205	200	200	255	255	221	221	625	162	410	93	400

Окончание табл. 4.7

1	2	3	4	5	6	7	8	9	10	11	12	13
4	260	200	200	310	310	280	280	820	192	520	110	500
5	324	300	300	380	380	350	350	1025	252	650	93	600
6,3	410	400	400	470	470	441	441	1250	298	820	113	700
8	520	600	600	600	600	560	560	1470	378	905	212	1050
10	650	750	750	750	750	700	700	1439	452	1212	296	1245
12,5	813	750	750	930	930	875	875	1270	542	1350	300	1260
Номер вент.	L_3	D	D_1	d	d_1	d_2	t_1	T_2	N	n	n_1	n_2
2,5	260	253	280	7	7	10	100	100	8	8	1	1
3,15	220	318	345	7	7	10	100	100	8	12	2	2
4	290	405	430	7	7	10	100	100	8	12	2	2
5	410	510	530	7	7	15	100	100	16	16	3	3
6,3	510	640	660	7	7	15	100	100	16	20	4	4
8	606	820	850	11	11	15	150	150	16	16	4	4
10	990	1006	1040	10	10	15	150	150	16	20	5	5
12,5	1260	1270	1310	10	12	24	150	150	24	24	5	5

Положения корпуса вентилятора ВР 80-75 (рис. 4.8, 4.9).

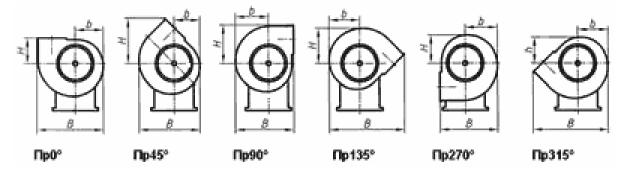


Рис. 4.8. Вентиляторы правого вращения

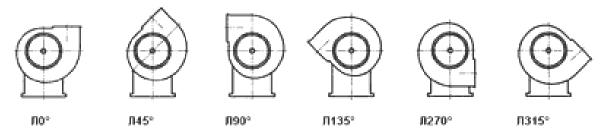


Рис.4.9. Вентиляторы левого вращения

Конструкция центробежного вентилятора представлена на рис. 4.10.

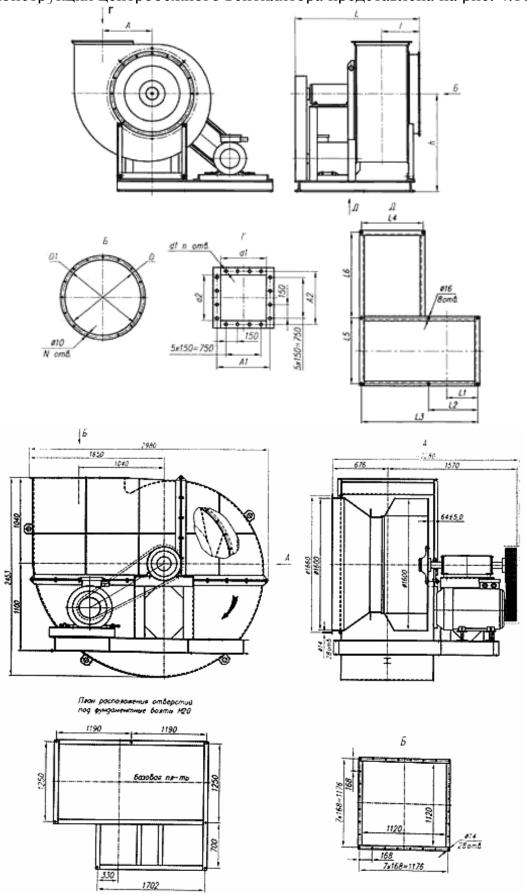


Рис. 4.10. Конструкция центробежного вентилятора

Контрольные вопросы

- 1. В чем заключается основной принцип подбора жалюзийных решеток?
- 2. В чем заключается основной принцип подбора утепленных воздушных клапанов?
 - 3. В чем заключается основной принцип подбора зонтов?
 - 4. В чем заключается основной принцип подбора дефлекторов?
 - 5. В чем заключается основной принцип подбора калориферов?
 - 6. В чем заключается основной принцип подбора фильтров?
 - 7. В чем заключается основной принцип подбора вентиляторов?

ЗАКЛЮЧЕНИЕ

Население промышленно развитых стран мира большую часть времени (около 80%) проводит внутри зданий, поэтому состав воздуха в помещении оказывает существенное воздействие на человека. Системы вентиляции, конструкция которых определяется функциональным назначением помещения, при правильной работе оказывают бесспорное влияние на создание микроклимата и, как следствие, на самочувствие и работоспособность находящихся в них людей.

С помощью современного оборудования систем вентиляции можно решить проблемы воздухообмена помещения практически с любыми функциональными особенностями, при этом проектировщик имеет возможность полностью выразить свой инженерный замысел. Профессионалы, владеющие информацией о современных системах вентиляции и инженерным искусством, способны не только решать самые сложные творческие задачи в процессе проектирования, но и (что не менее важно) довести свой проект до полной реализации в натуре.

Овладев комплексом знаний о современных системах вентиляции, инженеры-проектировщики становятся активными участниками создания современной, удобной среды обитания человека.

Авторы понимают, что не все вопросы, рассмотренные в учебном пособии, изложены одинаково глубоко и полно, и будут благодарны читателям за возникшие замечания и предложения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СНиП 41-01–2003. Отопление, вентиляция и кондиционирование. 2004.
- 2. СНиП 31-05–2003. Общественные здания административного назначения. 2004.
- 3. Внутренние санитарно-технические устройства: Вентиляция и кондиционирование воздуха [Текст] / Б.В. Баркалов, Н.Н. Павлова, Ю.И. Шиллера. Кн. 1, Ч.3.—4-е изд., перераб. и доп. М.: Стройиздат, 1992.
 - 4. МГСН 4.07-96. Дошкольные учреждения, 1996.
- 5. ВСН 49–86 / Госгражданстрой «Дошкольные учреждения. Нормы проектирования».
 - 6. МГСН 4.06–03. Общеобразовательные учреждения, 1997.
- 7. ВСН 51–86 / Госгражданстрой «Профессионально-технические, средние, специальные и высшие учебные заведения. Нормы проектирования».
- 8. CH 50–86/Госгражданстрой «Общеобразовательные школы и школы-интернаты. Нормы проектирования».
 - 9. МГСН 4.12–97. Лечебно-профилактические учреждения, 1997.
- 10. ВСН 45–86 / Госгражданстрой «Кинотеатры. Нормы проектирования».
 - 11. МГСН 4.17–98. Культурно-зрелищные учреждения, 1999.
- 12. МГСН 4.18–99. Предприятия бытового обслуживания населения, 1999.
 - 13. МГСН 4.13–97. Предприятия розничной торговли, 1998.
- 14. ВСН 54–87 / Госгражданстрой «Предприятия розничной торговли. Нормы проектирования».
 - 15. МГСН 4.08–97. Физкультурно-оздоровительные учреждения, 1998.
- 16. Пособие 1.91 к СНиП 2.04.05–91. Расчет и распределение приточного воздуха. М.: Промстройэкспор, 1993.
- 17. Рекомендации по расчету воздухораспределения в общественных зданиях. М., ЦНИИЭП инженерного оборудования, 1981.
- 18. Внутренние санитарно-технические устройства: Вентиляция и кондиционирование воздуха [Текст] / под ред. Н.Н. Павлова, Ю.М. Шиллера. Кн. 2,Ч.3. 4-е изд., перераб. и доп. М.: Стройиздат, 1992.
- 19. Титов, В.П. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий [Текст] / В.П. Титов [и др.]. М.: Стройиздат, 1985. 208 с.
- 20. Вахвахов, Г.Г. Энергосбережение и надежность вентиляционных установок [Текст] / Г.Г. Вахвахов. М.: Стройиздат, 1989.
- 21. Стомахина, Г.И. Отопление, вентиляция и кондиционирование воздуха [Текст]: справочное пособие / Г.И. Стомахина. М.: Пантори, 2003.

- 22. BCH 353-86 / Госгражданстрой «Воздуховоды. Нормы проектирования».
- 23. Ананьев, В.А. Системы вентиляции и кондиционирования. Теория и практика [Текст] / В.А. Ананьев [и др.]. М.: Евроклимат, Изд-во «Арина», 2000. 416 с.
- 24. СНиП 2.09.02-89*. Общественные здания и сооружения. М.: Стройиздат, 1999.
- 25. Беккер, А. Системы вентиляции [Текст] / А.М. Беккер. Техносфера, Евроклимат, 2005.
- 26. Краснов, Ю.С. Системы вентиляции и кондиционирования. Рекомендации по проектированию, испытаниям и наладке [Текст] / Ю.С. Краснов [и др.]. М.: Термокул, 2004.
- 27. Юрьев, А.С. Справочник по расчетам гидравлических и вентиляционных систем [Текст] / А.С. Юрьев. М.: АНО НПО «Мир и семья», 2001.

ПРИЛОЖЕНИЯ

Приложение 1

Таблица П1.1

Данные для подбора решеток АМН, АМР, АДН, АДР при подаче или удалении воздуха в помещениях (α_1 = α_2 = 0°)

		<i>I</i> ,=?	5 дБ(А)	L_{wA} =35	πΕ(Δ)
$A\times B$,	$F_{\rm o}$, M^2	L_{0} ,	ΔPn ,	L_{o} ,	ΔPn ,
MM	M^2	_{м³/ч} ·Па	Д <i>і п</i> , Па	_{м³} /ч·Па	Да n, Па
200×100	0,018	180	6	280	14
300×100	0,027	240	5	360	12
400×100	0,036	300	5	400	8
500×100	0,045	370	5	520	10
600×100	0,054	420	4	600	8
150×150	0,020	180	6	280	14
300×150	0,041	370	5	520	10
400×150	0,055	420	4	600	8
500×150	0,070	530	4	800	8
600×150	0,084	600	3	900	7
700×150	0,098	700	3	1100	8
800×150	0,112	740	3	1250	8
200×200	0,036	300	5	400	8
300×200	0,055	420	4	600	8
400×200	0,074	530	4	800	8
500×200	0,093	650	3	1050	8
600×200	0,112	740	3	1250	8
700×200	0,131	820	3	1400	7
800×200	0,150	900	2	1500	7
1000×200	0,188	1100	2	1600	5
300×300	0,084	600	3	900	7
400×300	0,113	740	3	1250	8
500×300	0,142	860	2	1450	7
600×300	0,171	1000	2	1550	5
700×300	0,200	1200	2	1700	5
800×300	0,229	1300	2	1900	4
1000×300	0,287	1500	2	2200	4

Таблица П1.2 Данные для подбора решеток АМН-К, АМР-К, АДН-К, АДР-К при подаче или удалении воздуха в помещениях (α_1 = α_2 = 0°)

Продолжение прил. 1

 $L_{wA} = 25 \text{ дБ(A)}$ $L_{wA} = 35 \text{ дБ(A)}$ $L_{wA} \leq 20$ дБ(A) F_{o} , M^2 $A \times B$, L_{0} L_{0} ΔPn , $L_{\rm o}$ ΔPn , ΔPn , MM $_{\rm M}^3/$ ч $\cdot \Pi a$ ${
m M}^3/{
m q}~\Pi a$ м³/ч∙Па Па Па Па 200×100 0,014 300×100 0,022 400×100 0,030 500×100 0.039 600×100 0,047 150×150 0.017 300×150 0,036 400×150 0,050 500×150 0,063 600×150 0,076 700×150 0,089 800×150 0.102 200×200 0,032 300×200 0.050 400×200 0,069 500×200 0,087 600×200 0.105 700×200 0,123 800×200 0,141 1000×200 0,177 300×300 0.079 400×300 0,107 500×300 0,135 600×300 0,163 700×300 0,191 800×300 0,219 1000×300 0,275

Окончание прил. 1

 $\label{eq: 1.3} \begin{tabular}{ll} T а б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} Данные для подбора диффузоров 4АПН, 4АПР \\ при подаче воздуха в помещение настилающимися веерными струями \\ \begin{tabular}{ll} T а б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T а б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a б л и ц а $\Pi 1.3$ \\ \begin{tabular}{ll} T a δ η η η η η η η η η η η η η η η η$

4×D	E	$L_{wA} \leq 20$	дБ(А)	$L_{wA}=20$	дБ(А)	$L_{wA}=2$	5 дБ(А)	$L_{wA} = 3$	35дБ(А)
$A\times B$,	F_{0}	$L_{\rm o}$,	ΔPn ,	$L_{\rm o}$,	ΔPn ,	$L_{\rm o}$,	ΔPn ,	$L_{\rm o}$,	ΔPn ,
MM	M	$M^3/$ ч·Па	Па	м³/ч∙Па	Па	$м^3/ч \cdot \Pi a$	Па	м ³ /ч·Па	Па
225×225	0,004	20	2,9	50	18	80	46	100	72
300×300	0,019	50	0,8	130	5	270	23	380	46
300×450	0,040	80	0,8	250	8	500	30	750	68
300×600	0,060	120	0,8	300	5	700	25	1000	51
375×375	0,045	80	0,6	250	6	550	28	800	39
450×300	0,040	80	0,8	250	8	500	30	750	68
450×450	0,083	150	0,6	400	4	950	24	1300	45
450×600	0,126	250	0,7	1000	12	1500	26	2000	47
525×525	0,132	250	0,7	1000	11	1500	24	2000	43
600×300	0,060	120	0,8	300	5	700	25	1000	51
600×450	0,126	250	0,7	1000	12	1500	26	2000	47
600×600	0,192	350	0,6	800	3	2000	20	2500	31
675×675	0,263	500	0,7	1100	3	2500	17	3850	40
750×750	0,346	650	0,6	1300	3	3200	16	4800	36
825×825	0,440	800	0,6	1600	2	4000	15	5600	30
900×900	0,545	900	0,5	1800	2	5000	16	6400	26
975×975	0,661	1200	0,6	2100	2	6000	15	8000	27
1050×1050	0,789	1400	0,6	2300	2	7000	15	9000	24

Таблица П1.4 Данные для подбора диффузоров ДПУ-М при подаче воздуха в помещение

			Кол-во	$L_{wA} \leq 2$	0 дБ(А)	$L_{wA} = 25$	Б дБ(А)	L_{wA}	= 35 дБ(А)
øA, mm	F_{o}	<i>b</i> ,	оборотов обтека-			$L_{\rm o},$ м ³ /ч·Па		$L_{\rm o}$, м 3 /ч Па	ΔPn ,
			$ { m теля}\ N$	м³/ч·Па	Па	м³/ч·Па	Па	м³/ч IIa	Па
		b	= 0.15A - 1	горизонт	альная нас	стилающ	ая веерн	ая струя	
100	0,007	15	15	80	21	120	46	160	82
125	0,011	19	19	130	21	170	36	240	71
160	0,018	24	19	180	14	260	30	370	60
200	0,029	30	24	250	11	350	22	530	50
250	0,046	37,5	30	350	9	500	18	800	45
			b = 0	,2 <i>A</i> – вер	тикальная	коничес	кая стру	Я	
100	0,007	20	20	80	17	120	38	160	67
125	0,011	25	25	130	17	170	29	240	58
160	0,018	32	26	180	12	260	24	370	49
200	0,029	40	32	250	9	350	18	530	40
250	0,046	50	40	350	7	500	14	800	36

 Π р и м е ч а н и е : b — расстояние между двумя положениями обтекателя — крайним и текущим выдвинутым

 $\Pi \, {\rm p} \, {\rm u} \, {\rm n} \, {\rm o} \, {\rm w} \, {\rm e} \, {\rm H} \, {\rm u} \, {\rm e} \, \, 2$ К расчету круглых стальных воздуховодов при $t = 20 \, \, ^{\circ}{\rm C}$

Р,			Кол	тичество	проходя	щего воз	вдуха, м ³ /	[/] ч (верхн	яя строка	а) и поте	ри давле	ния	
Г, Па	υ, _{M/c}		на трег	ние, Па н	іа 1 м (ні	ижняя стр	ока) воз	духовода	а при вну	тренних	диаметр	ax, mm	
11a	M/C	100	110	125	140	160	180	200	225	250	280	315	355
1	2	3	4	5	6	7	8	9	10	11	12	13	14
0.006	0.1	2,8	3,4	4,42	5,64	7,2	9,2	11,3	14,3	18	22	28	36
0,006	0,1	0,004	0,003	0,003	0,002	0,002	0,0009	0,0009	0,0009	0,0009	0,0009	0,0009	0,0009
0,024	0,2	5,6	6,8	8,8	11,1	14,5	18,3	22,6	28,6	35	44	56	71
0,024	0,2	0,01	0,01	0,01	0,008	0,0069	0,006	0,005	0,005	0,004	0,004	0,003	0,003
0,054	0.2	8,4	10,2	13,3	16,6	21,7	27,5	33,9	42,9	53	66	84	107
0,034	0,3	0,029	0,019	0,019	0,019	0,01	0,01	0,01	0,01	0,008	0,007	0,006	0,005
0,096	0,4	11,3	13,7	17,7	22,1	28,9	36,6	45,2	57,2	71	89	112	142
0,090	0,4	0,039	0,039	0,029	0,029	0,019	0,019	0,019	0,019	0,01	0,01	0,01	0,009
0,15	0,5	14,1	17,1	22,1	27,7	36,2	45,8	56,5	71,5	88	111	140	178
0,13	0,3	0,059	0,059	0,049	0,039	0,039	0,029	0,029	0,019	0,019	0,019	0,019	0,01
0.22	0,6	16,9	20,5	26,5	33,2	43,4	54,9	67,8	85,8	106	133	168	214
0,22	0,6	0,088	0,078	0,686	0,059	0,049	0,039	0,039	0,029	0,029	0,019	0,019	0,019
0,29	0,7	19,8	23,9	30,9	38,8	50,6	64,1	79,1	100	124	155	196	249
0,29	0,7	0,118	0,098	0,088	0,078	0,059	0,059	0,049	0,039	0,039	0,029	0,029	0,019
0,38	0,8	22,6	27,3	36,3	44,3	57,9	73,2	90,4	114	141	177	224	285
0,36	0,8	0,147	0,127	0,108	0,098	0,078	0,069	0,059	0,049	0,049	0,039	0,039	0,029
0.40	0.0	25,4	30,8	39,7	49,8	65,1	82,4	102	129	159	199	252	321
0,49	0,9	0,176	0,157	0,137	0,118	0,098	0,088	0,078	0,069	0,059	0,049	0,039	0,039

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
0.60	1	28,3	34,2	44,2	56,4	72,3	91,6	113	143	177	222	280	356
0,60	1	0,216	0,186	0,167	0,137	0,118	0,108	0,088	0,078	0,069	0,059	0,049	0,038
0,73	1 1	31,1	37,6	48,6	60,9	79,6	101	124	157	194	244	308	392
0,73	1,1	0,255	0,225	0,196	0,167	0,137	0,118	0,108	0,088	0,078	0,069	0,059	0,049
0,86	1.2	33,9	41	53	66,5	86,8	110	136	172	212	266	376	427
0,80	1,2	0,294	0,265	0,225	0,196	0,167	0,147	0,127	0,108	0,098	0,078	0,069	0,059
1,01	1,3	36,7	44,4	57,4	72	94	119	147	186	230	288	365	453
1,01	1,3	0,343	0,304	0,255	0,225	0,186	0,167	0,147	0,127	0,108	0,098	0,078	0,069
1,18	1,4	36,9	47,9	61,8	77,5	101	128	158	200	247	310	393	499
1,10	1,4	0,392	0,343	0,294	0,255	0,216	0,186	0,167	0,137	0,127	0,108	0,088	0,078
1,35	1,5	42,4	51,3	66,2	83,1	109	137	170	215	265	332	421	534
1,33	1,3	0,441	0,392	0,333	0,294	0,245	0,216	0,186	0,157	0,137	0,118	0,108	0,088
1,54	1,6	45,2	54,7	70,6	88,6	116	147	181	229	283	354	449	570
1,54	1,0	0,499	0,441	0,372	0,323	0,274	0,235	0,206	0,176	0,157	0,137	0,118	0,098
1,74	1,7	48	58,1	75,1	94,2	123	156	192	243	300	377	477	605
1,/4	1,7	0,549	0,49	0,421	0,363	0,304	0,265	0,235	0,196	0,176	0,157	0,127	0,118
1,94	1,8	50,9	61,5	79,5	99,9	130	165	204	268	318	399	505	641
1,74	1,0	0,608	0,539	0,461	0,402	0,343	0,294	0,255	0,225	0,196	0,167	0,147	0,127
2,17	1,9	53,7	65	83,9	105	137	174	215	272	336	421	533	677
4,17	1,7	0,6762	0,596	0,51	0,441	0,372	0,324	0,284	0,245	0,216	0,186	0,157	0,137
2,4	2	56,5	68,4	88,3	111	145	183	226	286	353	443	561	712
۷,٦		0,735	0,657	0,559	0,48	0,412	0,353	0,314	0,265	0,235	0,206	0,176	0,147

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2.65	2.1	59,3	71,8	92,7	116	162	192	237	300	371	465	589	748
2,65	2,1	0,804	0,715	0,608	0,529	0,451	0,382	0,333	0,294	0,255	0,225	0,196	0,167
2,9	2,2	62,2	76,2	97,1	122	169	201	249	315	389	487	617	734
2,9	2,2	0,872	0,774	0,666	0,578	0,49	0,421	0,363	0,314	0,274	0,245	0,206	0,176
3,18	2,3	65	78,6	101	127	172	211	260	329	406	510	645	819
3,10	2,3	0,951	0,8428	0,7154	0,6174	0,5292	0,4508	0,4018	0,343	0,3038	0,2646	0,2254	0,196
3,45	2,4	67,8	82,1	106	134	174	220	271	343	424	532	673	865
3,43	2,4	1,019	0,911	0,774	0,66	0,568	0,49	0,431	0,372	0,323	0,284	0,245	0,206
3,74	2,5	70,6	85,5	110,4	139	181	229	282	358	442	554	701	890
3,74	2,3	1,098	0,98	0,833	0,725	0,608	0,529	0,461	0,402	0,353	0,304	0,265	0,225
4,05	2,6	73,5	88,9	115	144	188	238	294	372	459	576	729	926
4,03	2,0	1,176	1,049	0,892	0,774	0,657	0,568	0,49	0,431	0,372	0,323	0,284	0,245
4,37	2,7	76,3	92,3	119	150	195	247	305	386	477	598	757	962
4,57	2,7	1,264	1,117	0,960	0,833	0,706	0,608	0,529	0,461	0,402	0,353	0,304	0,255
4,7	2,8	79,1	95,7	124	155	203	256	316	401	495	620	785	997
7,7	2,0	1,352	1,196	1,019	0,882	0,745	0,647	0,51	0,49	0,431	0,372	0,323	0,274
5,04	2,9	81,9	99,2	128	161	210	266	328	415	512	643	813	1033
3,04	2,9	1,441	1,274	1,088	0,941	0,794	0,686	0,596	0,519	0,461	0,392	0,343	0,294
5,39	3	84,8	103	133	166	217	275	339	429	530	665	841	1068
3,39)	1,529	1,352	1,156	0,999	0,853	0,735	0,637	0,51	0,49	0,421	0,363	0,314

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
5 76	2 1	87,6	106	137	172	224	284	350	444	548	687	869	1104
5,76	3,1	1,617	1,441	1,225	1,068	0,902	0,784	0,676	0,588	0,519	0,451	0,382	0,333
6,14	3,2	90,4	109	141	177	231	293	362	458	565	709	897	1140
0,14	3,2	1,715	1,529	1,294	1,127	0,951	0,823	0,715	0,627	0,549	0,47	0,412	0,353
6,53	3,3	93,3	113	146	183	239	302	373	472	583	731	925	1175
0,33	3,3	1,813	1,607	1,372	1,196	1,009	0,872	0,764	0,657	0,578	0,499	0,431	0,372
6,93	3,4	96,1	116	150	188	246	311	384	486	601	753	953	1211
0,93	3,4	1,911	1,705	1,45	1,254	1,068	0,921	0,804	0,696	0,608	0,529	0,461	0,392
7,34	3,5	98,9	120	154	194	253	321	396	501	618	775	981	1247
7,54	3,3	2,009	1,793	1,529	1,323	1,117	0,970	0,843	0,735	0,647	0,51	0,48	0,412
7,77	3,6	102	123	159	199	260	330	407	515	636	798	1009	1282
7,77	3,0	2,117	1,891	1,607	1,392	1,176	1,019	0,892	0,774	0,676	0,588	0,51	0,441
8,2	3,7	105	127	163	2051	268	339	418	529	654	820	1038	1318
0,2	3,7	2,234	1,98	1,695	1,47	1,245	1,068	0,941	0,813	0,715	0,617	0,529	0,461
8,65	3,8	107	130	168	211	275	348	430	544	671	842	1066	1353
0,03	3,6	2,342	2,078	1,774	1,539	1,294	1,127	0,98	0,853	0,745	0,647	0,559	0,480
9,11	3,9	110	133	172	216	282	357	441	558	689	864	1094	1389
9,11	3,9	2,46	2,185	1,862	1,617	1,362	1,176	1,029	0,892	0,784	0,676	0,588	0,51
9,59	4	113	137	177	222	289	366	452	572	706	886	1122	1425
9,59	_ +	2,577	2,283	1,940	1,686	1,421	1,235	1,078	0,931	0,813	0,706	0,608	0,529

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
10.00	<i>A</i> 1	116	140	181	227	297	375	463	587	724	908	1150	1460
10,09	4,1	2,695	2,391	2,038	1,764	1,499	1,294	1,127	0,98	0,853	0,7448	0,637	0,549
10,58	4,2	119	144	186	233	304	385	475	601	742	931	1178	1496
10,38	4,2	2,813	2,449	2,127	1,842	1,558	1,352	1,176	1,019	0,892	0,774	0,666	0,578
11.07	12	122	147	190	238	311	394	486	615	759	953	1208	1531
11,07	4,3	2,94	2,607	2,225	1,931	1,627	1,411	1,235	1,068	0,931	0,813	0,696	0,608
11,56	1 1	124	150	194	205	318	403	497	629	777	975	1234	1567
11,30	4,4	3,067	2,724	2,323	1,019	1,705	1,47	1,284	1,107	0,97	0,853	0,735	0,627
12,15	4,5	127	154	199	249	326	412	509	644	795	997	1262	1603
12,13	4,3	3,195	2,832	2,421	2,097	1,774	1,529	1,343	1,156	1,019	0,882	0,764	0,657
12,64	4,6	130	157	203	255	333	421	520	658	812	1019	1290	1638
12,04	4,0	3,322	2,95	2,519	2,185	1,842	1,597	1,392	1,205	1,058	0,921	0,794	0,686
13,23	4,7	133	161	208	260	340	430	531	672	830	1041	1318	1674
13,23	4,7	3,459	3,067	2,617	2,274	1,921	1,656	1,45	1,254	1,098	0,951	0,823	0,706
13,82	4,8	136	164	212	266	347	440	543	687	848	1063	1346	1710
13,62	4,6	3,587	3,185	2,715	2,352	1,989	1,725	1,509	1,303	1,147	0,99	0,853	0,735
14,41	4,9	139	168	216	271	355	449	554	701	865	1086	1374	1745
14,41	4,7	3,734	3,312	2,822	2,45	2,068	1,793	1,568	1,352	1,186	1,029	0,892	0,666
14,99	5	141	171	221	277	362	458	565	715	883	1108	1402	1781
14,59	3	3,871	3,43	2,930	2,538	2,146	1,852	1,617	1,401	1,235	1,068	0,921	0,794

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
15 50	5 1	144	174	225	283	369	467	577	730	901	1130	1430	1810
15,58	5,1	4,008	3,567	3,038	2,636	2,225	1,931	1,686	1,46	1,274	1,107	0,96	0,823
16,17	5,2	147	178	226	288	376	476	588	744	918	1152	1458	1854
10,17	3,2	4,155	3,695	3,146	2,734	2,313	1,999	1,744	1,509	1,323	1,147	0,99	0,853
16,86	5,3	150	181	234	294	383	485	599	758	936	1174	1486	1888
10,80	3,3	4,312	3,822	3,263	2,832	2,391	2,068	1,803	1,558	1,372	1,186	1,029	0,882
17,44	5,4	153	185	238	299	391	494	610	773	954	1196	1514	1923
1 / ,44	3,4	4,459	3,959	3,371	2,93	2,479	2,136	1,872	1,617	1,421	1,235	1,058	0,911
18,13	5,5	155	188	243	305	398	503	622	787	971	1219	1542	1959
10,13	3,3	4,606	4,096	3,489	3,028	2,558	2,215	1,931	1,676	1,47	1,274	1,098	0,951
18,92	5,6	158	192	247	310	405	513	633	801	989	1241	1570	1994
10,92	3,0	4,763	4,234	3,606	3,126	2,646	2,283	1,999	1,725	1,519	1,313	1,137	0,98
19,5	5,7	161	195	252	316	412	522	644	815	1007	1263	1598	2030
17,5	3,7	4,92	4,371	3,724	3,234	2,734	2,362	2,058	1,813	1,568	1,362	1,176	1,009
20,19	5,8	164	198	256	321	420	531	656	830	1024	1285	1626	2066
20,17	5,6	5,086	4,508	3,842	3,342	2,822	2,44	2,127	1,842	1,617	1,401	1,215	1,049
20,87	5,9	167	202	261	327	427	540	667	844	1042	1307	1654	2101
20,67	3,9	5,243	4,645	3,969	3,44	2,911	2,519	2,195	1,901	1,666	1,45	1,254	1,078
21,56	6	170	205	265	332	434	549	678	858	1060	1329	1682	2137
21,30	U	5,41	4,802	4,096	3,548	2,999	2,597	2,264	1,96	1,725	1,49	1,294	1,107

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
22.24	6.1	172	209	269	337	441	559	690	873	1071	1352	1711	2172
22,34	6,1	5,576	4,949	4,214	3,655	3,097	2,675	2,332	2,009	1,774	1,539	1,333	1,147
23,03	6,2	175	212	274	343	449	568	701	887	1095	1374	1739	2208
25,03	0,2	5,753	5,106	4,351	3,773	3,195	2,764	2,411	2,087	1,833	1,588	1,372	1,176
23,81	6,3	178	215	278	349	456	577	712	901	1113	1396	1761	2244
23,61	0,3	5,919	5,253	4,479	3,881	3,283	2,842	2,479	2,146	1,882	1,637	1,411	1,215
24,6	6,4	181	219	283	355	463	586	724	916	1130	1418	1795	2279
24,0	0,4	6,096	5,41	4,606	3,998	3,381	2,92	2,558	2,215	1,94	1,686	1,45	1,2544
25,28	6,5	184	222	287	360	470	595	735	930	1148	1440	1823	2315
23,20	0,5	6,272	5,566	4,743	4,116	3,479	3,009	2,626	2,274	1,989	1,735	1,49	1,284
26,07	6,6	187	226	291	366	478	604	746	944	1166	1462	1851	2351
20,07	0,0	6,449	5,723	4,880	4,234	3,577	3,097	2,705	2,342	2,049	1,813	1,539	1,323
26,95	6,7	189	229	296	371	485	614	757	959	1183	1484	1879	2386
20,93	0,7	6,6346	5,88	5,018	4,351	3,685	3,185	2,78	2,401	2,107	1,833	1,578	1,362
27,73	6,8	193	233	300	377	492	623	769	973	1201	1501	1907	2422
21,13	0,8	6,821	6,047	5,155	4,479	3,783	3,273	2,862	2,47	2,166	1,882	1,627	1,401
28,52	6,9	195	236	305	382	499	632	780	987	1219	1529	1935	2457
20,32	0,9	6,997	6,213	5,292	4,596	3,881	3,361	2,93	2,538	2,225	1,931	1,666	1,441
29,4	7	198	239	309	388	506	641	791	1001	1236	1551	1963	2493
29,4	/	7,193	6,556	5,439	4,724	3,989	3,45	3,01	2,607	2,283	1,989	1,715	1,48

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
20.10	7 1	201	242	314	393	514	650	802	1015	1254	1578	1991	2529
30,18	7,1	7,379	6,556	5,586	4,841	4,09	3,538	3,0968	2,675	2,352	2,038	1,754	1,519
31,07	7,2	204	246	318	399	521	659	814	1030	1272	1595	2019	2564
31,07	1,2	7,575	6,674	5,733	4,978	4,204	3,636	3,175	2,754	2,411	2,097	1,803	1,558
31,95	7,3	206	250	322	404	528	668	825	1044	1289	1617	2047	2600
31,93	7,3	7,781	6,899	5,89	5,106	4,322	3,734	3,263	2,822	2,47	2,146	1,852	1,597
32,83	7,4	209	253	327	410	535	678	837	1059	1307	1640	2075	2635
32,83	7,4	7,977	7,076	6,037	5,233	4,43	3,822	3,342	2,891	2,538	2,205	1,901	1,637
33,71	7,5	212	257	331	415	543	687	848	1073	1325	1662	2103	2671
33,71	7,5	8,173	7,2618	6,184	5,370	4,537	3,92	3,43	2,969	2,597	2,254	1,95	1,676
34,6	7,6	215	260	336	421	550	696	859	1087	1342	1684	2131	2707
34,0	7,0	8,379	7,438	6,243	5,498	4,645	4,018	3,508	3,038	2,666	2,313	1,999	1,715
35,57	7,7	218	263	340	427	557	705	870	1102	1360	1706	2159	2742
33,37	7,7	8,585	7,615	6,497	5,635	4,763	4,116	3,597	3,116	2,734	2,372	2,049	1,764
36,46	7,8	220	267	344	432	564	714	882	1116	1378	1728	2187	2778
30,40	7,0	8,791	7,801	6,644	5,772	4,880	4,214	3,685	3,185	2,793	2,43	2,097	1,803
37,44	7,9	223	270	349	438	572	723	893	1130	1395	1750	2215	2814
37,44	1,9	8,996	7,987	6,811	5,909	5,998	4,3218	3,773	3,263	2,862	2,489	2,146	1,852
38,32	8	226	274	353	443	579	733	904	1145	1413	1772	2243	2849
30,32	O	9,212	8,173	6,968	6,047	5,116	4,42	3,861	3,342	2,93	2,548	2,195	1,891

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
20.2	0 1	229	277	358	449	586	742	916	1159	1431	1795	2271	2885
39,3	8,1	9,4276	8,369	7,134	6,194	5,233	4,528	3,949	3,42	2,999	2,607	2,244	1,931
40,28	8,2	232	280	362	454	593	751	927	1173	1448	1817	2299	2920
40,28	0,2	9,643	8,565	7,301	6,331	5,361	4,626	4,047	3,499	3,067	2,666	2,303	1,98
41,26	8,3	235	284	367	460	601	760	938	1187	1466	1839	2327	2956
41,20	8,3	9,898	8,761	7,468	6,478	5,478	4,733	4,136	3,577	3,136	2,724	2,352	2.019
42,34	8,4	237	287	371	465	608	769	949	1202	1484	1861	2355	2992
42,34	0,4	10,09	8,957	7,634	6,625	5,606	4,841	4,234	3,665	3,205	2,783	2,401	2,068
43,32	8,5	240	291	375	471	615	778	961	1216	1501	1885	2383	3027
43,32	6,5	10,29	9,153	7,811	6,772	5,723	4,949	4,322	3,744	3,283	2,852	2,46	2,117
44,3	8,6	243	294	380	476	622	782	972	1230	1519	1905	2412	3063
44,3	8,0	10,58	9,359	7,977	6,919	5,851	5,057	4,42	3,822	3,352	2,911	2,509	2,166
45,37	8,7	246	298	298	482	629	797	983	1245	1537	1928	2440	3098
43,37	0,7	10,78	9,565	8,154	7,076	5,978	5,165	4,518	3,91	3,43	2,969	2.568	2,215
46,45	8,8	249	301	389	487	637	806	995	1259	1554	1950	2468	3134
40,43	0,0	10,98	9,761	8,33	7,174	6,105	5,282	4,616	3,783	3,499	3,038	2,626	2,264
47,43	8,9	252	304	393	493	644	815	1006	1273	1572	1972	2496	3170
47,43	0,9	11,27	9.996	8,506	7,379	6,243	5,399	4,714	4,077	3,577	3,107	2,675	2,313
48,51	9	254	397	397	499	651	824	1017	1288	1590	1994	2524	3205
40,31)	11,466	8.683	8,683	7,536	6,37	5,508	4,812	4,165	3,655	3,165	2,734	2,362

Продолжение прил. 2 К расчету круглых стальных воздуховодов при $t=20~^{\circ}\mathrm{C}$

Р,				Количе	ество пр	оходяш	его возд	уха, м ³ /ч	(верхня	я строка) и потер	ри давлен	ия	
Па	υ, _{M/c}		на	трение,	, Па на	1 м (ниж	княя стро	ка) возд	уховода	при вну	тренних	диаметра	ax, mm	
11a	M/C	400	450	500	560	630	710	800	900	1000	1120	1250	1400	1600
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.0050	0.1	45	57	71	89	112	142	181	229	283	364	442	554	723
0,0059	0,1	0,001	0,001	0,001	_	1	_	_	-	_	_	_	_	_
0.024	0.2	90	114	141	177	224	285	362	458	565	709	883	1103	1447
0,024	0,2	0,002	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	_	_
		136	172	212	267	336	427	543	687	848	1063	1325	1662	2170
0,054	0,3	0,005	0,004	0,004	0,003	0,003	0,002	0,002	0,002	0,001	0,001	0,001	0,001	0,001
0.006	0.4	181	229	283	354	449	570	723	916	1130	1418	1766	2216	2894
0,096	0,4	0,008	0,007	0,006	0,005	0,004	0,004	0,003	0,003	0,002	0,002	0,002	0,002	0,001
0.1400	0.5	226	286	353	443	561	712	904	1145	1413	1772	2208	2769	3617
0,1499	0,5	0,01	0,01	0,009	0,008	0,006	0,006	0,005	0,004	0,004	0,003	0,003	0,002	0,002
0.2156	0.6	271	343	424	532	673	855	1085	1373	1696	2127	2649	3323	4341
0,2156	0,6	0,01	0,01	0,01	0,01	0,009	0,008	0,007	0,006	0,005	0,004	0,004	0,003	0,003
0.204	0.7	317	401	495	620	785	997	1266	1602	1978	2481	3091	3877	5064
0,294	0,7	0,02	0,02	0,02	0,01	0,01	0,01	0,009	0,007	0,007	0,006	0,005	0,004	0,004
0,3831	0,8	362	458	565	709	897	1140	1447	1831	2261	2836	3533	4431	5788
0,3831	0,8	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,009	0,008	0,007	0,006	0,005	0,005
0,4851	0,9	407	515	636	798	1009	1289	1628	2060	2543	3190	3974	4985	6511
0,4031	0,9	0,03	0,03	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,009	0,008	0,007	0,006
0,5998	1	452	572	707	886	1122	1425	1809	2289	2826	3545	4416	5539	7235
0,3998	I	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,009	0,008	0,007

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.7252	1 1	497	629	777	975	1254	1567	1990	2518	3109	3899	4857	6093	7958
0,7252	1,1	0,05	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,008
0,8634	1,2	543	687	848	1063	1346	1710	2170	2747	3391	4254	5299	6647	8681
0,8034	1,2	0,05	0,05	0,04	0,04	0,03	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,009
1,0094	1,3	588	744	918	1152	1458	1852	2351	2976	3674	4602	5740	7201	9405
1,0094	1,3	0,06	0,05	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02	0,01	0,01	0,01
1,176	1,4	633	801	989	1241	1570	1994	2532	3205	3956	4963	6182	7755	10128
1,170	1,4	0,07	0,06	0,05	0,05	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,01	0,01
1,3524	1,5	678	858	1060	1329	1682	2137	2713	3434	4239	5317	6623	8308	10852
1,3324	1,3	0,08	0,07	0,06	0,05	0,05	0,04	0,03	0,03	0,03	0,02	0,02	0,02	0,01
1,5386	1,6	723	916	1130	1418	1795	2279	2894	3662	4622	5672	7065	8862	11575
1,3300	1,0	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03	0,03	0,02	0,02	0,02	0,02
1,7346	1,7	768	973	1201	1507	1907	2422	3074	3891	4804	6026	7507	9416	12299
1,7340	1,/	0,1	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03	0,03	0,02	0,02	0,02
1,9404	1,8	814	1030	1272	1595	2019	2564	3256	4120	5087	6380	7948	9970	13022
1,9404	1,0	0,108	0,1	0,08	0,07	0,06	0,05	0,05	0,04	0,04	0,03	0,03	0,02	0,02
2,1658	1,9	859	1087	1342	1684	2131	2707	3436	4349	5369	6735	8390	10524	13746
2,1036	1,9	0,118	0,1	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03	0,03	0,03	0,02
2,401	2	904	1145	1413	1772	2243	2849	3617	4578	5652	7090	8831	11078	14469
2,401		0,127	0,109	0,1	0,09	0,08	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,02

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 6 4 6	2.1	950	1202	1484	1861	2355	2992	3798	4807	5935	7444	9273	11632	15193
2,646	2,1	0,147	0,127	0,108	0,1	0,08	0,07	0,06	0,05	0,05	0,04	0,03	0,03	0,03
2,9008	2,2	995	1259	1554	1950	2468	3134	3979	5036	6217	7799	9714	12186	15916
2,9008	2,2	0,157	0,137	0,118	0,1	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03	0,03
3,1752	2,3	1040	1316	1625	2038	2580	3277	4160	5265	6500	8153	10156	12739	16639
3,1732	2,3	0,167	0,147	0,127	0,108	0,1	0,08	0,07	0,06	0,05	0,05	0,04	0,04	0,03
3,4496	2,4	1085	1373	1696	2127	2692	3419	4341	5494	6782	8508	10598	13293	17363
3,4490	2,4	0,176	0,157	0,137	0,118	0,1	0,09	0,08	0,07	0,06	0,05	0,04	0,04	0,03
3,7436	2,5	1170	1431	1766	2216	2804	3561	4522	5723	7065	8862	11039	13847	18086
3,7430	2,3	0,196	0,167	0,147	0,127	0,109	0,1	0,08	0,07	0,06	0,05	0,05	0,04	0,04
4,0474	2,6	1176	1488	1837	2304	2916	3704	4702	5952	7348	9217	11481	144010,0	18810
4,04/4	2,0	0,206	0,176	0,157	0,137	0,118	0,1	0,09	0,08	0,07	0,06	0,05	4	0,04
4,3708	2,7	1221	1545	1908	2393	3028	3846	4883	6180	7630	9571	11922	14955	19533
7,3700	2,7	0,225	0,196	0,167	0,147	0,127	0,108	0,1	0,08	0,07	0,06	0,05	0,05	0,04
4,704	2,8	1266	1602	1978	2481	3141	3989	5064	6409	7913	9926	12364	15509	20257
7,707	2,0	0,235	0,206	0,176	0,157	0,137	0,118	0,1	0,09	0,08	0,07	0,06	0,05	0,04
5,0372	2,9	1311	1660	2049	2570	3253	4131	5245	6638	8195	10280	12805	16063	20980
3,0372	۵,۶	0,255	0,216	0,196	0,167	0,147	0,127	0,108	0,09	0,08	0,07	0,06	0,05	0,05
5,39	3	1356	1717	2120	2659	3365	4274	5426	6867	8478	10635	13247	16617	21704
3,39)	0,274	0,235	0,206	0,176	0,157	0,127	0,118	0,1	0,09	0,08	0,07	0,06	0,05

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5,7624	3,1	1402	1774	2190	2747	3477	4416	5607	7096	8761	10989	13688	17171	22427
3,7024	3,1	0,294	0,245	0,216	0.186	0,167	0,137	0,118	0,108	0,09	0,08	0,07	0,06	0,05
6,1348	3,2	1447	1831	2261	2836	3589	4559	5788	7325	9043	11344	14130	17725	23151
0,1346	3,2	0,304	0,265	0,225	0,196	0,176	0,147	0,127	0,108	0,1	0,09	0,07	0,06	0,05
6,5268	3,3	1492	1888	2331	2925	3701	4701	5969	7554	9326	11698	14572	18279	23874
0,3208	3,3	0,323	0,274	0,245	0,206	0.186	0,157	0,137	0,118	0,1	0,09	0,08	0,07	0,06
6,9286	2 1	1537	1946	2402	3013	3814	4844	6149	7783	9608	12053	15013	18832	24598
0,9280	3,4	0,343	0,294	0,255	0,225	0,196	0,167	0,147	0,127	0,108	0,1	0,08	0,07	0,06
7,3402	3,5	1583	2003	2473	3102	3926	4986	6330	8012	9891	12407	15455	19386	25321
7,3402	3,3	0,353	0,304	0,274	0,235	0,206	0,176	0,147	0,127	0,118	0,1	0,09	0,08	0,06
7 7714	2.6	1628	2060	2543	3190	4038	5129	6511	8242	10174	12762	15896	19940	26044
7,7714	3,6	0,372	0,323	0,284	0,245	0,216	0,186	0,157	0,137	0,118	0,108	0,09	0,08	0,07
8,2026	3,7	1673	2117	2614	3279	4150	5271	6692	8470	10456	13116	16338	20494	26768
8,2020	3,7	0,392	0,343	0,304	0,255	0,225	0,196	0,167	0,147	0,127	0,108	0,1	0,08	0,07
2 6521	3,8	1718	2175	2685	3368	4262	5413	6873	8698	10739	13471	16779	21048	27491
8,6534	3,0	0,412	0,363	0,314	0,274	0,235	0,206	0,176	0,147	0,127	0,118	0,1	0,09	0,07
0.114	3,9	1763	2232	2755	3456	4374	5556	7054	8927	11021	13825	17221	21602	28215
9,114	3,9	0,431	0,372	0.333	0.284	0,245	0,216	0.186	0,157	0,137	0,118	0,108	0,09	0,08
9,5942	4	1809	2289	2826	3545	4481	5698	7235	9156	8698	14180	17662	22156	28938
9,3342	4	0,451	0,392	0,343	0,294	0,255	0,225	0.186	0,167	0,147	0,127	0,108	0,1	0,08

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10.004	4,1	1854	2346	2897	3634	4599	5841	7415	9385	11587	14534	18104	22710	29662
10,094	4,1	0.48	0,412	0,363	0,314	0,274	0,235	0,196	0,176	0,147	0,127	0,118	0,1	0,09
10,584	4,2	1899	2404	2967	3722	4711	5983	7596	9514	11869	14889	18546	23264	30385
10,364	4,2	0,5	0,431	0,372	0,323	0.284	0,245	0,206	0,176	0,157	0,137	0,118	0,108	0,09
11,074	4,3	1944	2461	3038	3811	4825	6126	7777	9843	12152	15243	18987	23818	31109
11,074	4,3	0,519	0,451	0,392	0,343	0,294	0,255	0,216	0,186	0,167	0,147	0,127	0,108	0,09
11,564	4,4	1990	2518	3109	3899	4935	6268	7958	10071	12434	15598	19429	24371	31832
11,304	4,4	0,539	0,47	0,412	0,353	0,304	0,265	0,225	0,196	0,176	0,147	0,127	0,118	0,1
12,152	4,5	2035	2575	3179	3988	5047	6411	8139	10301	12717	15952	19870	24925	32556
12,132	4,3	0,568	0,49	0,431	0,372	0,323	0,274	0,235	0,206	0,176	0,157	0,137	0,118	0,1
12,642	4,6	2080	2632	3250	4077	5160	6553	8320	10530	13000	16307	20312	25479	33279
12,042	4,0	0,588	0,51	0,441	0,382	0,333	0,284	0,245	0,216	0,186	0,167	0,137	0,127	0,1
13,23	4,7	2125	2690	3321	4165	5272	6690	8501	10759	13282	16661	20753	26033	34002
13,23	4,/	0,608	0,529	0,461	0,402	0,343	0,294	0,255	0,225	0,196	0,167	0,147	0,127	0,108
13,818	4,8	2170	2747	3391	4254	5384	6838	8681	10987	13565	17016	21195	26587	34726
13,010	4,0	0,637	0,549	0,48	0,421	0,363	0.314	0,265	0,225	0,206	0,176	0,157	0,137	0,108
14,41	4,9	2216	2804	3462	4343	5496	6980	8862	11216	13847	17370	21637	27141	35449
14,41	4,9	0,657	0,568	0,5	0,431	0,372	0,323	0,274	0,235	0,206	0.186	0,157	0,137	0,118
14,99	5	2261	2861	3532	4431	5608	7123	9043	11445	14130	17725	22078	27695	36173
14,77)	0,686	0,588	0,519	0,451	0,392	0.333	0.284	0,245	0,216	0.186	0,167	0,147	0,118

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15 50	5 1	2306	2919	3603	4520	5720	7265	9224	11674	14413	18079	22520	28248	36896
15,58	5,1	0,706	0,608	0,539	0,47	0,402	0,343	0,294	0,255	0,225	0,196	0,167	0,147	0,127
16,17	5,2	2351	2976	3674	4608	5833	7408	9405	11903	14695	18434	22961	28803	37620
10,17	3,2	0,735	0,637	0,559	0,48	0,421	0,363	0,314	0,265	0,235	0,206	0,176	0,157	0,127
16.96	5,3	2396	3033	3744	4697	5945	7550	9586	12132	14978	18788	23403	29356	38343
16,86	3,3	0,764	0,657	0,572	0,5	0,431	0,372	0,323	0,274	0,245	0,206	0,186	0,157	0,137
17,44	5,4	2442	3090	3816	4786	6057	7693	9767	12361	15260	19143	23844	29910	39067
1 / ,44	3,4	0,784	0,676	0,598	0,519	0,451	0,382	0,333	0,284	0,255	0,216	0,186	0,167	0,137
18,13	5,5	2487	3147	3886	4874	6169	7835	9948	12590	15543	19497	24286	30464	39790
16,13	3,3	0,813	0,706	0,617	0,539	0,461	0,402	0,343	0,294	0,255	0,225	0,196	0,167	0,147
18,92	5,6	2535	3205	3956	4963	6281	7978	10128	12819	15826	19851	24727	31018	40514
10,92	3,0	0,843	0,725	0,637	0.549	0.48	0,412	0,353	0,304	0,265	0,235	0,206	0,176	0,147
19,5	5,7	2577	3262	4027	5052	6393	8120	10309	13047	16108	20208	25169	31572	41257
19,5	3,7	0,872	0,755	0,657	0,568	0,49	0,421	0,363	0,314	0,274	0,245	0,206	0,186	0,157
20,19	5,8	2623	3319	4098	5140	6506	8263	10490	13277	16391	20561	25611	32126	41960
20,19	3,6	0,902	0,774	0,676	0,588	0,51	0,441	0,382	0,323	0.284	0,245	0,216	0,186	0,157
20,87	5,9	2668	3376	4168	5229	6618	8405	10671	13505	16673	20915	26052	32680	42684
20,87	3,9	0,931	0.804	0.706	0,608	0.529	0,451	0,392	0,333	0,294	0,255	0,225	0,196	0,167
21.56	6	2713	3434	4239	5317	6730	8548	10852	18734	16956	21270	26494	33234	43407
21,56		0,96	0,823	0,725	0,627	0.539	0.47	0.402	0,343	0,304	0,265	0,225	0,196	0,167

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
22.24	6 1	2758	3491	4310	5406	6842	8690	11033	13963	17239	21624	26935	33788	44131
22,34	6,1	0,99	0,853	0,745	0,647	0,559	0,48	0,412	0,353	0,314	0,274	0,235	0,206	0,176
23,03	6,2	2803	3605	4380	5495	5495	8832	11214	14191	17521	21979	27377	34342	44854
23,03	0,2	1,019	0,902	0,764	0,666	0,572	0,5	0,431	0,372	0,323	0,284	0,245	0,216	0,176
23,81	6,3	2849	3605	4451	5583	7066	8975	11394	14421	17804	22333	27818	34895	45578
23,61	0,3	1,049	0,902	0,794	0,686	0,588	0,51	0,441	0,382	0,333	0,284	0,255	0,216	0,186
24,6	6,4	2894	3662	4522	5672	7178	9117	11575	14650	18086	22688	28260	35449	46301
24,0	0,4	1,078	0,931	0,813	0,706	0,608	0,529	0,451	0,392	0,343	0,294	0,255	0,225	0,186
25,28	6,5	2939	3720	4592	5761	7291	9260	11756	14879	18369	23042	28702	36003	47025
23,26	0,5	1,107	0,96	0,843	0,725	0,627	0,539	0,47	0,402	0,353	0,304	0,265	0,235	0,196
26,07	6,6	2984	3777	4663	5849	7403	9402	11937	15108	18652	23397	29143	36557	47748
20,07	0,0	1,137	0,98	0,862	0,745	0,647	0,559	0,48	0,412	0,363	0,314	0,274	0,235	0,206
26,95	6,7	3029	3834	4734	5938	7515	9545	12118	15337	18934	23751	29585	37111	48472
20,93	0,7	1,176	1,009	0,882	0,774	0,666	0,568	0,49	0,421	0,372	0,323	0,284	0,245	0,206
27,73	6,8	3075	3892	4804	6026	7627	9687	12299	15566	19217	24106	30026	37665	49495
21,13	0,8	1,205	1,039	0,911	0,794	0,686	0,588	0,51	0,441	0,382	0,333	0,294	0,255	0,216
28,52	6,9	3120	3949	4875	6115	7739	9830	12480	15795	19499	24460	30468	38219	49918
20,32	0,9	1,235	1,068	0,941	0,813	0,706	0,608	0,519	0,451	0,392	0,343	0,294	0,255	0,216
29,4	7	3165	4006	4945	6204	7851	9972	12660	16023	19782	24815	30901	38773	50642
49,4	/	1,274	1,098	0,96	0,833	0.725	0,617	0,539	0,461	0,402	0,353	0,304	0,265	0,225

Продолжение прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
30,18	7,1	3210	4063	5016	6292	7964	10115	12841	16252	20265	25169	31351	39327	51365
30,18	7,1	1,303	1,127	0,99	0,853	0,735	0,637	0,549	0,47	0,412	0,363	0,314	0,274	0,235
31,07	7,2	3256	4120	5087	6381	8076	10265	13022	16481	20347	25524	31792	39881	52089
31,07	7,2	1,343	1,156	1,009	0,882	0,755	0,657	0,559	0,49	0,421	0,372	0,323	0,284	0,235
31,95	7,3	3301	4178	5157	6470	8188	10405	13203	16710	20630	25878	32234	40434	52812
31,93	7,3	1,372	1,186	1,039	0,902	0,774	0,666	0,572	0,5	0,441	0,382	0,333	0,284	0,245
32,83	7,4	3346	4235	5228	6558	8300	10545	13384	16939	20912	26233	32676	40988	53536
32,63	7,4	1,411	1,215	1,068	0,921	0,794	0,686	0,588	0,51	0,451	0,392	0,343	0,294	0,245
33,71	7,5	3391	4292	5299	6647	8412	10685	13565	17168	21195	26687	33117	41542	54259
33,71	7,5	1,45	1,245	1,098	0,951	0,823	0,706	0,608	0,519	0,461	0,402	0,353	0,304	0,255
34,6	7,6	3436	4349	5369	6735	8524	10830	13746	17397	21478	26942	33559	42096	54983
34,0	7,0	1,48	1,274	1,117	0,97	0,843	0,725	0,617	0,539	0,47	0,412	0,353	0,314	0,265
35,57	7,7	3482	4406	5440	6824	8637	10969	13907	17626	21760	27296	34000	42650	55706
33,37	/,/	1,519	1,313	1,147	0,1	0,862	0,745	0,637	0,549	0,48	0,421	0,363	0,314	0,265
36,46	7,8	3527	4464	5511	6913	8749	11112	14107	17854	22043	27690	34442	43204	56430
30,40	7,0	1,558	1,343	1,176	1,019	0,882	0,755	0,657	0,559	0,49	0,431	0,372	0,323	0,274
37,44	7,9	3572	4521	5581	7001	8861	11254	14288	18084	22325	28005	34883	43758	57153
37,44	1,9	1,588	1,372	1,205	1,049	0,902	0,774	0,666	0,572	0,51	0,441	0,382	0,333	0,284
38,32	8	3617	4578	5652	7090	8973	11397	14469	19312	22608	28359	35325	44312	57876
30,32	8	1,627	1,401	1,235	1,068	0,921	0,794	0,686	0,588	0.519	0,451	0,392	0,343	0,284

Окончание прил. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
20.2	8,1	3662	4635	5723	7178	9085	11539	14650	18541	22891	28714	35766	35766	58600
39,3	0,1	1,666	1,441	1,264	1,098	0,941	0,813	0,696	0,608	0,529	0,461	0,402	0,353	0,294
40,28	8,2	3708	4693	5793	7267	9197	11682	14831	18770	23173	29068	36208	45419	59323
40,28	0,2	1,705	1,47	1,294	1,117	0,97	0,833	0,715	0,617	0,539	0,47	0,412	0,353	0,304
41,26	8,3	3753	4750	5864	7356	9310	11824	15012	18999	23456	29423	36650	45973	60047
41,20	0,3	1,744	1,509	1,323	1,147	0,99	0,853	0,735	0,637	0,559	0,48	0,421	0,363	0,304
42,34	8,4	3798	4807	5935	7444	9422	11967	15193	19228	23738	29777	37091	46527	60770
42,34	0,4	1,784	1,539	1,353	1,166	1,009	0,872	0,745	0,647	0,568	0,49	0,431	0,372	0,314
43,32	8,5	3843	4864	6005	7533	9534	12109	15373	19457	24021	30132	37533	47081	61494
43,32	0,5	1,823	1,578	1,382	1,196	1,029	0,892	0,764	0,657	0,572	0,5	0,441	0,382	0,323
44,3	8,6	3889	4921	6076	7622	9646	12251	15554	19686	24304	30486	37974	47635	62217
44,3	8,0	1,862	1,607	1,411	1,225	1,058	0,911	0,784	0,676	0,598	0,519	0,451	0,392	0,333
45,37	8,7	3934	4979	6147	7710	9758	12394	15735	19915	24586	30841	37416	48189	62941
45,57	0,7	1,901	1,646	1,441	1,254	1,078	0,931	0,804	0,686	0,608	0,529	0,461	0,402	0,333
46,45	8,8	3979	5036	6217	7799	9870	12536	15916	20144	24869	31195	38858	48743	63664
40,43	0,0	1,94	1,676	1,47	1,274	1,098	0,951	0.813	0.706	0,617	0,539	0,47	0,402	0,343
47,43	8,9	4024	5093	6288	7887	9983	12679	16097	20373	25151	31550	39299	49297	64388
47,43	0,9	1,989	1,715	1,499	1,303	1,127	0,97	0,833	0,725	0,637	0,549	0,48	0,412	0,353
48,51	9	4069	5150	6359	7976	10095	12821	16277	20602	25434	31904	39741	49851	65111
40,31	7	2,019	1,754	1,539	1,333	1,147	0,99	0,853	0,735	0,647	0,559	0,49	0,421	0,363

Приложение 3

 $\label{eq:Tadin} T\,a\,\delta\,\pi\,u\,\mu\,a\ \Pi\,3\,.\,1$ Коэффициенты местных сопротивлений фасонных деталей воздуховодов

п/п	Наименование устройства на детали	Эскиз	Значения КМС
1	2	3	4
1	Цилиндрическая труба		1,1
2	Цилиндрическая труба с конфузором		4,5
3	Решетка жалюзийная наружная		1,3
4	Решетка для забора или выпуска с параллельными перьями, типа РР		2,2
5	Дефлектор	3° ^	0,64
6	Зонт над вытяжной шахтой	2do do d	1,3
7	Колено 90°	V ₀	1,2

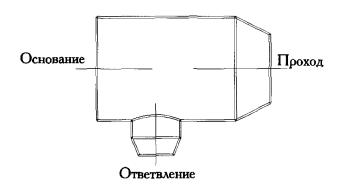

Продолжение табл. ПЗ.1

	_	_					u 0 J1 . 1		ı
1	2	3				4			
	Прямой			- · -					
0	канал	$V_0 F_0$		$F_{\text{otb}} / F_{\text{o}}$		0,6	0,8	1,0	
8	с сеткой или			ζ		1,97	1,32	1,0	
	решеткой	Form					<u> </u>		
-	на торце								
	Первое боковое	_	\mathbf{E} /	\overline{F}	2 0	4 0.0	0.0	1.0	
	отверстие в	F_0	F_{otb} /					1,0	
9	воздуховоде		ζ	64	4 15	5 6,3	3,5	2,2	
	вытяжной								
	системы	F _{отв}							
	Отвод	V ₀		D / I	1		1.5		<u> </u>
10	штампован-			R/d		1	1,5	2	<u> </u>
	ный	2		ζ		0,21	0,17	0,15	
		_ D							
]	выход			
			υ.	$/\upsilon_1$	0,4		0,8 1	1,2	
	Conservan	An.	- 0	× -1	1,8		1,7 1,8	1,9	
	Среднее	Follo	1)	-	1,4		1,8 2	1,7	
11	отверстие в приточном	F14 F2V2	U _o	/ v ₁	· ·	•	,		
	воздуховоде		(, כ	2,1		2,6 3		
	воздуховодс			/		роход	0.0	1	
			υ_2	$/\upsilon_1$	0,4		0,6 0,8	1	
			i	7	0,06	, ,	$0.03 \mid -0.06$	5 -0,03	
			$F_{\text{\tiny OTB}}$			$L_{ m otb}$ / I	L_2		
			F_1	0,1	0,2	0,3	0,4	0,5	
						ВХОД	Į		
		1 1 1 1	0,1	0,8	1,3	1,4	1,4	1,4	
	Среднее	L_1, V_1, F_1	0,2	-1,4	0,9	1,3	1,4	1,4	
12	отверстие в	(-, f of the second	0,4	-9,5	0,2	0,9	1,2	1,3	
12	МОНЖКТЫВ	a Vanda	0,6	-21,2	-2,5	0,3	1,0	1,2	
	воздуховоде	Lambi				прохо	ЭД		
			0,1	0,1	-0,1	-0.8	-2,6	-6,6	
			0,2	0,1	0,2	-0,01	-0,6	-2,1	
			0,4	0,2	0,3	0,3	0,2	-0,2	
			0,6	0,2	0,3	0,4	0,4	0,3	
						расшире		1	
			F_0/F_1	0	0,1	0,2	0,3	0,4	
			ζ	1	0,81			0,36	
	Изменение	$F_0 V_0$	F_0/F_1	0,5	0,6	0,7	0,8	1	
13	поперечного		ζ	0,25	0,16			0	
	сечения	$(F_1 v_1)$	F /=			сужен			
			F_0/F_1	0	0,1	0,2	0,3	0,4	
			ζ	0,5	0,45		0,35	0,3	
			F_0/F_1	0,5	0,6		0,8	1	
			ζ	0,25	0,2	0,15	0,1	0	ł

Продолжение прил. 3 Окончание табл. ПЗ.1

-		2	4											
1	2	3												
			F_0/F_1					ζ	при с	ı, град	Į.	1		
	ый			10	12	14	. 1	16	18	20	24	28	32	40
	Диффузор пирамидальный	K-+=+7	0,2	0,14),17	0,2	2 0,	,24	0,28	0,31	0,4	0,49	9 0,59	0,69
14	фу: дал	1 de 1),16	0,1		,21	0,24	0,27	0,35	0,43		0,61
• •	ифи		0,3	0,11),13	0,1	6 0,	,19	0,22	0,24	0,31	0,38	8 0,46	0,53
	Д тра				0,1	0,12		,14	0,16	0,18	0,23	0,28		
	111	Ψ^{α}	0,5	0,07),08	0,0	9 0),1	0,12	0,13	0,17	0,2	0,24	0,28
			0,6	0,05),06	0,0	7 0,	,07	0,08	0,09	0,11	0,14	4 0,16	0,19
	й		E /E					Ċ	ζ при	α, гра	Д.			
	СКИ	[+-]	F_0/F_1	10	1	12	14	4	16	20	2	4	30	40
	Диффузор конический	() () () () () () () () () ()	0,2	0,12	0,	,14	0,1	17	0,19	0,25	5 0,3	32	0,43	0,61
15	кон		0,25	0,1	0,	,12	0,1	5	0,17	0,22	0,2	28	0,37	0,49
13	do		0,3	0,09	0,	,11	0,1	3	0,15	0,2	0,2	25	0,33	0,42
	фуз	+	0,4	0,08	0,	,09	0,	1	0,12	0,15	5 0,	19	0,25	0,35
	фиђ	√a/	0,5	0,06	0,	,07	0,0	8(0,09	0,11	0,	14	0,18	0,25
	7	Ÿ	0,6	0,05	0,	,05	0,0)6	0,07	0,08	3 0,	,1	0,12	0,17
			1/	J				Зна	ачения	я ζо пр	ри α, і	град.	•	
		a/2	1/6	a [10			20		30		4	.0
	ТИ	V, F1 Vo F0 0	0,	1		0,41			0,34		0,27	7	0,	24
	s ce		0,1	5		0,39			0,29		0,22	2	0,	18
1.6	b E	1	0,	6	(0,29			0,2		0,15	5	0,	13
16	Конфузор в сети		Свы	ше						$\zeta_0 = 0.1$				
	нф		0,	6						$\zeta_0 - 0$, I			
	Ко				,	Знач	ени	яζ	конфу	/зора	в сеті	И		
				(п	ри п	пям	οντα	олы	ном се	ечени	и $d =$	2ab	_ ,	
			(при прямоугольном сечении $d = \frac{2ab}{a+b}$)								b'			

Таблица П 3 . 2 Коэффициенты местных сопротивлений тройников круглого сечения в режиме всасывания на проход

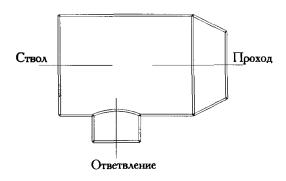


£ /£	I /I				Значе	ния ζ п	ри <i>f</i> _o / <i>f</i> _c			
f_{π}/f_{c}	$L_{\rm o}/L_{\rm c}$	0,65	0,5	0,4	0,32	0,25	0,2	0,16	0,125	0,1
1	2	3	4	5	6	7	8	9	10	11
	0,05	_	_	_	_	0,1	0,1	0,13	0,13	0,15
	0,1	_	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
	0,2	0,2	0,2	0,25	0,3	0,3	0,35	0,38	0,42	0,45
1	0,3	0,35	0,4	0,45	0,5	0,6	0,6	0,71	0,8	0,9
	0,4	0,55	0,6	0,7	0,8	1	1,1	1,3	1,5	1,8
	0,5	0,75	1	1,2	1,5	1,7	2	2,4	2,8	3,5
	0,6	1,2	1,6	2	2,7	3,1	3,8	4,7	5,6	7,2
	0,05	_	_	_	_	0,2	0,2	0,2	0,2	0,2
	0,1	0,2	0,2	0,2	0,2	0,25	0,25	0,25	0,25	0,3
	0,2	0,3	0,3	0,3	0,3	0,35	0,4	0,4	0,45	0,55
	0,3	0,35	0,35	0,4	0,5	0,55	0,6	0,7	0,8	1
0,8	0,4	0,5	0,6	0,7	0,8	0,9	1	1,2	1,4	1,7
	0,5	0,75	0,9	1,1	1,3	1,5	1,8	2,1	2,5	3,1
	0,6	1,1	1,4	1,8	2,3	2,7	3,3	4	4,8	6,1
	0,7	1,92	2,7	3,5	4,6	5,5	6,9	8,4	10,2	13,3
	0,8	3,9	6	8,2	11,5	13,9	17,8	22,2	24	36
	0,01	_	_	_	_	-	_	_	0,2	0,2
	0,05	_	_	_	0,2	0,2	0,2	0,2	0,2	0,2
	0,1	0,2	0,25	0,25	0,25	0,25	0,25	0,25	0,3	0,3
	0,2	0,25	0,25	0,25	0,3	0,35	0,4	0,4	0,4	0,5
0,65	0,3	0,35	0,4	0,45	0,45	0,5	0,55	0,6	0,7	0,85
0,03	0,4	0,4	0,5	0,55	0,7	0,8	0,9	1	1,2	1,4
	0,5	0,6	0,75	0,85	1,1	1,3	1,5	1,8	2,1	2,6
	0,6	0,9	1,2	1,5	1,9	2,2	2,7	3,3	3,9	5
	0,7	1,5	2,2	2,8	3,8	4,5	5,5	6,9	9	10,5
	0,8	3,5	5	6,8	7,1	11,4	14,3	17,9	22	28,5

Окончание табл. ПЗ.2

1	2	3	4	5	6	7	8	9	10	11
	0,05	_	1	1	0,16	0,16	0,16	1	_	_
	0,1	0,16	0,17	0,17	0,18	0,18	0,19	1	_	_
	0,2	0,2	0,2	0,25	0,25	0,25	0,3	1	_	_
	0,3	0,25	0,3	0,3	0,35	0,4	0,4	_	_	_
0,5	0,4	0,35	0,4	0,45	0,55	0,6	0,65	_	_	_
0,3	0,5	0,5	0,6	0,7	0,8	0,95	1,1	1	_	_
	0,6	0,75	0,9	1,2	1,4	1,7	2	1	_	_
	0,7	1,2	1,6	2,1	2,7	3,2	3,9	1	_	_
	0,8	2,6	3,7	4,9	6,7	8	10		_	_
	0,9	9,5	14,9	20,2	28,6	35,1	44,6	_	_	_

Таблица П 3.3 Коэффициенты местных сопротивлений тройников круглого сечения в режиме всасывания на ответвление



f/f	L_o/L_c				Значе	ния ζ пр	ои $f_{\rm o}/f_{\underline c}$			
$f_{\rm II}/f_{\rm c}$	$L_0/L_{\underline{c}}$	0,65	0,5	0,4	0,32	0,25	0,2	0,16	0,125	0,1
1	2	3	4	5	6	7	8	9	10	11
	0,05	1	_	1	_	-18,9	-13	-8,6	-6,2	-3,9
	0,1	1	-14,5	-9,8	-5,9	-4,2	-2,8	-1,9	-1,3	-0,7
	0,2	-4,8	-2,9	-1,8	-0,9	-0,6	-0,3	-0,15	-0,4	0
1	0,3	-1,6	-0,8	-0,4	0	0	0,1	0,2	0,2	0,2
	0,4	-0,45	-0,1	0,1	0,2	0,3	0,3	0,28	0,25	0,2
	0,5	0,05	0,2	0,3	0,4	0,4	0,4	0,3	0,3	0,25
	0,6	0,25	0,4	0,5	0,5	0,4	0,4	0,35	0,3	0,3

Продолжение прил. 3 Окончание табл.ПЗ.3


1	2	3	4	5	6	7	8	9	10	11
	0,05	_	_	_	_	-17,6	-12	-8,3	-5,7	-3,6
	0,1	_	-13,3	-9	-5,3	-3,8	-2,5	-1,8	-1,1	-0,6
	0,2	-4,3	-2,5	-1,5	-0,8	-0,4	-0,2	0,2	0,05	0,1
	0,3	-1,4	-0,6	-0,2	0	0,2	0,2	0,2	0,2	0,25
0,8	0,4	-0,35	0	0,2	0,3	0,35	0,35	0,3	0,3	0,3
	0,5	0,1	0,3	0,4	0,45	0,4	0,4	0,35	0,35	0,35
	0,6	0,35	0,5	0,5	0,55	0,5	0,5	0,35	0,35	0,35
	0,7	0,5	0,6	0,6	0,6	0,6	0,5	0,35	0,35	0,35
	0,8	0,6	0,7	0,7 5	0,6	0,6 7	0,5	0,35	0,35	0,35
1	2	3	4	5	6	7	8	9	10	11
	0,01	_	_	_	_	_	_	_	-142,8	-91,4
	0,05	_	_	_	-22,3	-16,2	-11	-7,5	-5,22	-3,3
	0,1	-19,4	-12,4	-8,2	-4,9	-3,4	-2,2	-1,5	-0,92	-0,5
	0,2	-1,3	-2,3	-1,4	-0,6	-0,35	-0,1	0,09	0,2	0,2
0.65	0,3	-1,2	-0,45	-0.05	0,15	0,25	0,35	0,35	0,35	0,35
0,65	0,4	-0,2	0,1	0,3	0,45	0,45	0,5	0,5	0,5	0,5
	0,5	0,15	0,4	0,5	0,55	0,55	0,55	0,5	0,5	0,5
	0,6	0,4	0,5	0,6	0,65	0,6	0,6	0,5	0,5	0,5
	0,7	0,5	0,65	0,7	0,7	0,65	0,6	0,5	0,5	0,5
	0,8	0,65	0,7	0,7	0,7	0,65	0,6	0,55	0,55	0,55
	0,05	_	_	_	-20,4	-14,7	-10	_	_	_
	0,1	-17,7	-11,1	-7,5	-4,4	-3	-1,9	_	_	_
	0,2	-3,6	-2	-1,1	-0,4	-0,2	0,1	_	_	_
	0,3	-1	-0,3	0	0,3	0,4	0,45	_	_	_
0.5	0,4	-0,15	0,2	0,4	0,55	0,55	0,55	_	_	
0,5	0,5	-0,25	0,45	0,6	0,65	0,65	0,65	_	_	_
	0,6	0,45	0,6	0,65	0,7	0,7	0,65	_	_	_
	0,7	0,55	0,7	0,7	0,7	0,7	0,65	_	_	_
	0,8	0,65	0,75	0,75	0,75	0,75	0,7	_	_	_
	0,9	0,7	0,8	0,8	0,8	0,75	0,75	ı	_	_

Таблица П3.4 Коэффициенты местных сопротивлений тройников круглого сечения типа прямой врезки в режиме всасывания на ответвление

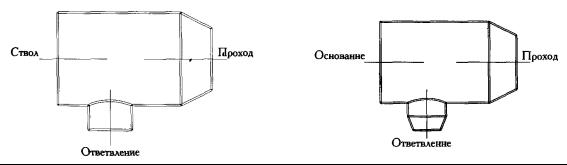
				Знач	ения ζ п	nи <i>f. /f.</i>		
f_{Π}/f_{c}	$L_{\rm o}/L_{\rm c}$	0,65	0,5		0,32		0,2	0,1
1	2	3	4	0,4 5	6	0,25 7	8	9
	0,05	_	_	_	_	_	-4,8	0,73
	0,1	_	_	-4,8	-1,35	-0,17	0,73	1,42
	0,2	_	-0,17	0,73	1,35	1,39	1,42	1,12
1	0,3	0,47	1,11	1,39	1,42	1,39	1,29	0,23
	0,4	1,32	1,39	1,42	1,35	1,26	1,12	_
	0,5	1,35	1,42	1,38	1,24			_
	0,6	1,41	1,39	1,29	_			_
	0,1	_	_	_	-1,62	-0,26	0,68	1,34
	0,2	_	-0,26	0,68	1,26	1,37	1,34	1,07
0,8	0,3	0,33	1,03	1,33	1,34	1,35	1,25	0,76
0,8	0,4	1,19	1,37	1,34	1,32	1,25	1,07	_
	0,5	1,32	1,34	1,34	1,24	1,07	0,91	_
	0,6	1,35	1,34	1,25	1,07	0,94	0,76	_
	0,2	_	-0,97	0,32	1,12	1,32	1,39	1,09
	0,3	0	0,89	1,24	1,39	1,35	1,29	0,77
0,65	0,4	0,98	1,32	1,39	1,32	1,25	1,09	_
0,03	0,5	1,28	1,39	1,34	1,23	1,09	0,92	_
	0,6	1,35	1,35	1,29	1,09	0,95	0,77	_
	0,7	1,38	1,35	1,19	0,98	0,83	_	_
	0,2	-7,49	-3,12	-0,91	0,56	0,99	1,24	1,1
	0,3	-1,7	0,11	0,85	1,24	1,3	1,26	0,79
	0,4	0,26	0,99	1,24	1,29	1,23	1,1	_
0,5	0,5	0,92	1,24	1,3	1,22	1,1	0,94	_
	0,6	1,17	1,3	1,26	1,1	0,98	0,79	_
	0,7	1,38	1,28	1,18	1	0,85	_	_
	0,8	1,34	1,23	1,1	0,89	_	_	_

Таблица П3.5 Коэффициенты местных сопротивлений тройников прямоугольного сечения в режиме всасывания на проход

6. 16	T /T		Значения ζ при $f_{ m o}/f_{ m c}$									
f_{Π}/f_{c}	$L_{\rm o}/L_{\rm c}$	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1			
1	2	3	4	5	6	7	8	9	10			
	0,05	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1			
	0,1	0,1	0,1	0,1	0,1	0,15	0,15	0,15	0,2			
	0,2	0,2	0,2	0,2	0,2	0,25	0,25	0,3	0,45			
1	0,3	0,3	0,3	0,2	0,35	0,4	0,45	0,55	0,9			
	0,4	0,35	0,4	0,45	0,5	0,6	0,7	1	1,7			
	0,5	0,45	0,5	0,65	0,7	0,95	1,2	1,8	3,3			
	0,6	0,55	0,7	0,9	1,2	1,6	2,2	3,4	6,8			
	0,05		0,2	0,2	0,2	0,2	0,2	0,2	0,2			
	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3			
	0,2	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,6			
	0,3	0,3	0,4	0,4	0,4	0,5	0,5	0,7	1,1			
0,9	0,4	0,4	0,5	0,5	0,6	0,7	0,8	1,1	1,9			
	0,5	0,5	0,6	0,7	0,9	1,1	1,4	2	3,6			
	0,6	0,6	0,8	1	1,3	1,8	2,4	3,6				
	0,7	0,7	1,1	1,6	2,3	3,2	4,7	7,5				
	0,8	1,4	1,6	3		7,6	11,7		_			
	0,05	0,2	0,2	0,2	0,25	0,25	0,25	0,3	0,3			
	0,1	0,25	0,3	0,3	0,3	0,3	0,3	0,3	0,4			
	0,2	0,3	0,3	0,35	0,35	0,35	0,4	0,45	0,7			
	0,3	0,35	0,4	0,45	0,45	0,5	0,6	0,7	1,1			
0,8	0,4	0,45	0,5	0,55	0,6	0,7	0,9	1,2	2			
	0,5	0,55	0,65	0,75	0,9	1,1	1,4	2	3,6			
	0,6	0,65	0,85	1,1	1,4	1,8	2,4	3,6	7			
	0,7	0,75	1,2	1,7	2,3	3,2	4,8	7,3	15			
	0,8	0,7	1,8	3,2	5	7,5	11,4	18,8	40,1			

Окончание табл. ПЗ.5

1	2	3	4	5	6	7	8	9	10
	0,05	0,25	0,25	0,25	0,3	0,3	0,3	0,3	0,3
	0,1	0,25	0,25	0,3	0,3	0,3	0,3	0,3	0,4
	0,2	0,3	0,3	0,3	0,35	0,4	0,4	0,5	0,7
	0,3	0,35	0,4	0,4	0,45	0,5	0,6	0,7	1,1
0,7	0,4	0,4	0,5	0,5	0,6	0,7	0,85	1,1	2
	0,5	0,5	0,6	0,7	0,85	1	1,3	1,9	3,2
	0,6	0,65	0,8	1	1,3	1,7	2,2	3,3	12
	0,7	0,8	1,2	1,6	2,2	3	4,3	6,7	_
	0,8	1	2	3,2	4,8	7	10,5	17	_
	0,05	_	0,2	0,2	0,2	0,25	0,25	0,3	0,3
	0,1	_	0,25	0,25	0,25	0,3	0,3	0,3	0,4
	0,2	0,3	0,3	0,3	0,3	0,35	0,35	0,4	0,6
	0,3	0,3	0,35	0,4	0,4	0,45	0,5	0,65	1
0,6	0,4	0,4	0,45	0,5	0,55	0,6	0,75	1	1,7
0,0	0,5	0,5	0,55	0,65	0,75	0,9	1,15	1,6	
	0,6	0,6	0,75	0,9	1,2	1,5	2	2,9	
	0,7	0,8	1,1	1,5	2	2,7	3,75		
	0,8	1,1	1,9	3	4,3	6,2	9,1		
	0,9	1,3	5,2	10,1	16,4	25,2	38,9		
	0,05	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,25
	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3
	0,2	0,25	0,25	0,25	0,3	0,3	0,3	0,4	0,5
	0,3	0,25	0,3	0,3	0,35	0,35	0,4	0,5	0,8
0,5	0,4	0,3	0,35	0,4	0,45	0,5	0,7	0,8	_
0,5	0,5	0,4	0,45	0,55	0,6	0,75	1	1,3	_
	0,6	0,5	0,65	0,8	0,95	1,2	1,6	2,3	_
-	0,7	0,7	0,95	1,2	1,7	2,2	3,5	_	_
	0,8	1,1	1,7	2,5	3,6	5,1	7,4	_	
	0,9	2	5,1	8,9	13,8	20,6	31,2	_	_


Таблица П 3 . 6 Коэффициенты местных сопротивлений тройников прямоугольного сечения в режиме всасывания на ответвление

0. 10	T /T		Значения ζ при $f_{ m o}/f_{ m c}$								
f_{Π}/f_{c}	$L_{\rm o}/L_{\rm c}$	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1		
1	2	3	4	5	6	7	8	9	10		
	0,05	-47,8	-70	-76,6	-72,9	-63,1	-49,6	-33,8	-16,8		
	0,1	-23,6	-22	-20	-16,9	-13,7	-10,2	-6,6	-2,9		
	0,2	-4,7	-4	-3	-2,5	-1,75	-1	-0,35	0,15		
1	0,3	-1,1	-0,8	-0,4	-0,15	0,15	0,4	0,55	0,6		
	0,4	0	0,2	0,4	0,55	0,7	0,75	0,8	0,7		
	0,5	0,5	0,6	0,7	0,8	0,9	0,9	0,9	0,7		
	0,6	0,7	0,8	0,85	0,9	0,95	0,95	0,9	0,65		
	0,05	_	-67,6	-76,3	-67,9	-58,3	-54	-30,8	-15,1		
	0,1	-21	-19,8	-17,9	-15,2	-12,3	-10,3	-5,8	-3,9		
	0,2	-4	-3,4	-2,8	-2,1	-1,4	-0,7	-0,1	0,3		
	0,3	-0,9	-0,5	-0,3	0,1	0,3	0,6	0,7	0,7		
0,9	0,4	0,2	0,4	0,5	0,7	0,8	0,9	0,9	0,7		
	0,5	0,6	0,7	0,8	0,9	1	1	0,9	0,7		
	0,6	0,8	0,9	0,9	1	1	1	0,9	_		
	0,7	0,8	0,9	0,9	1	1	1	0,9	_		
	0,8	0,9	1	0,95	1	1	1	_	_		
	0,05	-51,1	-66,1	-68,3	-63,1	-53,5	-41,4	-27,9	-13,6		
	0,1	-18,7	-17,6	-15,8	-13,6	-11	-8,1	-5	-2,1		
	0,2	-3,4	-2,8	-2,2	-1,7	-1,1	-0,45	0	0,45		
	0,3	-0,6	-0,3	0	0,2	0,5	0,7	0,8	0,75		
0,8	0,4	0,3	0,45	0,6	0,8	0,9	1	1	0,8		
	0,5	0,65	0,75	0,85	0,95	1	1	1	0,8		
	0,6	0,8	0,9	0,95	1	1,1	1,1	1	0,75		
	0,7	0,85	1	1	1	1	1	0,95	0,7		
	0,8	0,9	1	1	1	1	1	0,9	0,7		
	0,05	_	-68,5	-63,2	-57,8	-48,5	-37,2	-24,9	-12		
	0,1	-22,3	-16,9	-13,9	-12,1	-9,7	-7,1	-4,4	-1,7		
	0,2	-2,2	-2,2	-1,7	-1,3	-0,8	-0,25	0,25	0,5		
0,7	0,3	-0,1	-0,1	0,2	0,4	0,6	0,8	0,9	0,85		
	0,4	0,6	0,6	0,7	0,8	1	1	1	0,9		
	0,5	0,8	0,8	0,9	1	1,1	1,1	1,05	0,85		
	0,6	0,9	0,9	1	1	1,1	1,1	1	0,8		
	0,7	0,9	0,9	1	1	1,1	1	1	_		
	0,8	0,9	0,9	1	1	1	1	0,95	_		

Окончание табл. ПЗ.6

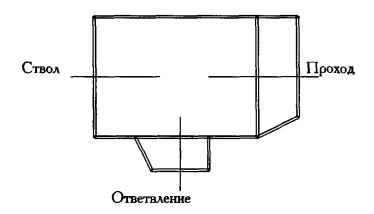

1	2	3	4	5	6	7	8	9	10
1		3				-			
	0,05	_	-60	-58,3	-52	-43,6	-33	-29,1	-10,5
	0,1	_	-14	-12,5	-10,6	-8,6	-6,3	-3,8	-1,4
	0,2	-2,3	-1,9	-1,5	-1	-0,55	-0,1	0,35	0,7
	0,3	-0,15	0	0,25	0,45	0,65	0,85	1	0,9
0,6	0,4	0,5	0,6	0,7	0,85	0,95	1	1,1	0,9
0,0	0,5	0,7	0,8	0,9	0,95	1	1,1	1,1	_
	0,6	0,8	0,9	0,95	1	1,1	1,1	1,1	_
	0,7	0,8	0,9	0,95	1	1,1	1,1	_	_
	0,8	0,8	0,9	0,95	0,95	1	1	_	_
	0,9	0,8	0,8	0,9	1	1	1	_	_
	0,05	-51,7	-55	-51,9	-45,4	-37,3	-28,3	-18,8	_9
	0,1	-12,6	-12	-10,8	-9,3	-7,5	-5,4	-3,2	-1,1
	0,2	-1,8	-1,5	-1,2	-0.8	-0,4	0	0,4	0,7
	0,3	0	0,1	0,25	0,45	0,65	0,8	1	0,9
0.5	0,4	0,5	0,6	0,8	0,9	0,95	1,1	1,1	_
0,5	0,5	0,7	0,75	0,85	0,95	1	1,1	1,1	_
	0,6	0,75	0,8	0,9	1	1	1,1	1,1	_
	0,7	0,8	0,85	0,9	1	1	1,1		
	0,8	0,8	0,85	0,9	0,95	1	1	_	_
	0,9	0,8	0,8	0,9	0,9	1	1	_	_

Таблица П3.7 Коэффициенты местных сопротивлений тройников круглого сечения при нагнетании

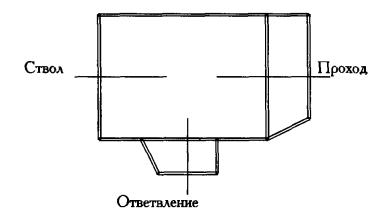

I /I	ζг	трохода	а при f_{Π}	/f _c		ζоті	ветвлен	ия при	$f_{\rm o}/f_{\rm c}$	
$L_{\rm o}/L_{\rm c}$	1,0	0,8	0,65	0,5	0,65	0,5	0,4	0,32	0,25	0,2
0,01	0,2	0,25	0,3	0,3	_	_	_	863	594	375
0,05	0,15	0,2	0,3	0,3	153	88,5	55	29,5	19,8	12
0,1	0,15	0,2	0,25	0,25	41,4	19,8	12	6,2	4,1	2,5
0,2	0,15	0,2	0,25	0,25	7,5	4,1	2,5	1,3	0,95	0,7
0,3	0,2	0,25	0,3	0,3	3	1,7	1,1	0,7	0,6	0,55
0,4	0,3	0,4	0,4	0,4	1,6	0,9	0,75	0,6	0,55	0,55
0,5	0,75	0,7	0,6	0,6	1	0,7	0,6	0,55	0,55	0,45
0,6	2,0	1,55	1,25	1,1	0,8	0,6	0,5	0,5	0,5	0,45
0,7	_	4,5	3,3	2,9	0,65	0,55	0,5	0,5	0,45	0,45
0,8	_	_	_	_	0,55	0,5	0,5	0,5	0,45	0,45
0,9	_	_	_	_	0,5	0,5	0,5	0,5	0,45	0,45
0,95	_	_	_	_	0,5	0,5	0,5	0,5	0,45	0,4

Таблица ПЗ.8 Коэффициенты местных сопротивлений тройников прямоугольного сечения при нагнетании на проход

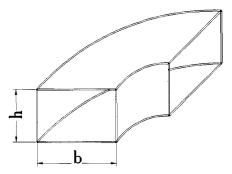

I /I			ζп	ри f_{π}/f_{c}		
$L_{ m o}/L_{ m c}$	1	0,9	0,8	0,7	0,6	0,5
0,01	0,18	0,2	0,25	0,25	0,3	0,3
0,05	0,2	0,2	0,25	0,25	0,3	0,3
0,1	0,2	0,2	0,2	0,25	0,3	0,3
0,2	0,1	0,15	0,2	0,2	0,25	0,25
0,3	0,1	0,15	0,2	0,25	0,25	0,3
0,4	0,15	0,2	0,25	0,25	0,3	0,3
0,5	0,35	0,35	0,35	0,35	0,4	0,4
0,6	0,75	0,7	0,7	0,65	0,6	0,5
0,7	_	1,8	1,5	1,3	1,1	0,9
0,8	_	5,45	4,5	3,7	2,9	2,2
0,9	_	_	_		13,8	10
0,95	_	_	_	_	_	_

Таблица ПЗ.9 Коэффициенты местных сопротивлений тройников прямоугольного сечения при нагнетании на ответвление

I /I			3н	ачения (ζ при $f_{\rm o}/f_{\rm o}$	C		
$L_{\rm o}/L_{\rm c}$	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1
0,01	_	ı	_	_	_	_	_	88,3
0,05	_	ı	_	88,3	54,8	29,5	11,7	2,2
0,1	54,8	44,1	28,8	19,5	11,8	6,1	2,2	0,45
0,2	11,7	8,6	6,1	3,9	2,2	1,1	0,4	0,3
0,3	4,6	3,3	2,2	1,5	0,8	0,4	0,35	0,3
0,4	2,25	1,7	1,1	0,75	0,4	0,3	0,3	0,3
0,5	1,3	1	0,7	0,45	0,3	0,3	0,3	0,3
0,6	0,9	0,65	0,45	0,35	0,3	0,3	0,3	0,3
0,7	0,6	0,45	0,35	0,3	0,3	0,3	0,35	_
0,8	0,45	0,35	0,3	0,3	0,3	0,3	0,35	_
0,9	0,35	0,3	0,3	0,3	0,3	0,35	0,35	
0,95	0,4	0,35	0,3	0,3	0,3	0,35	0,35	_

Таблица П 3 . 1 0 Коэффициенты местных сопротивлений отводов прямоугольного сечения

h,							b ,мм						
MM	100	150	200	250	300	400	500	600	800	1000	1200	1600	2000
11	2	3	4	5	6	7	8	9	10	11	12	13	14
100		0,61	0,24	0,31									
100		0,1	0,15	0,2									
150	0,08	0,15	0,22	0,28	İ								
150	0,05	0,09	0,14	0,18									
200	0,07	0,14	0,2	0,26	0,33	0,44	0,54						
200	0,05	0,09	0,13	0,17	0,21	0,28	0,34						
250	0,07	0,13	0,19	0,25	0,31	0,41	0,51	0,59	0,74				
230	0,04	0,08	0,12	0,16	0,2	0,26	0,32	0,38	0,47				
300			0,18	0,24	0,29	0,4	0,49	0,57	0,7	0,58			
300			0,12	0,15	0,19	0,25	0,31	0,36	0,45	0,37			
400			0,17	0,22	0,27	0,37	0,45	0,53	0,65	0,54	0,63	:	
400			0,11	0,14	0,17	0,23	0,29	0,34	0,42	0,34	0,4		
500			0,16	0,21	0,26	0,35	0,43	0,5	0,62	0,51	0,59	0,74	0,85
300			0,1	0,13	0,16	0,22	0,27	0,32	0,39	0,32	0,38	0,47	0,54
600		1		0,2	0,25	0,33	<u>0,41</u>	0,48	0,59	0,49	051	0,7	0,81
000				0,13	0,16	0,21	0,26	0,3	0,38	0,31	0,36	0,45	0,52
800	1			0,19	0,23	0,31	0,38	0,44	0,55	0,45	0,53	0,65	0,76
				0,12	0,15	0,2	0,24	0,28	0,33	0,29	0,34	0,42	0,48
1000					0,22	0,29	0,36	0,42	0,52	0,43	0,5	0,62	0,72
1000					0,14	0,19	0,23	0,27	0,23	0,27	0,32	0,39	0,46
1200						0,28	0,34	0,4	0,5	0,41	0,48	0,59	0,68
1200						0,18	0,22	0,25	0,32	0,26	0,3	0,38	0,44
1600							0,32	0,37	0,46	0,38	0,44	0,55	0,64
1000							0,2	0,24	0,29	0,24	0,28	0,35	0,41
2000							0,3	0,35	0,44	0,36	0,42	0,52	0,8
2000							0,19	0,22	0,28	0,23	0,27	0,33	

Таблица П3.11 Коэффициенты местных сопротивлений фасонных частей перед вентилятором

	Геометрическая		
Фасонный элемент	характеристика	Тип вентилятора	ζ
	фасонного элемента	Лопатки загнуты вперед	0,4
Отвод круглого сечения	$R = 1 - 1,5D_{o}$	Лопатки загнуты назад	0,45
Отвод квадратного	$R = (1-1,5)D_{\tau}$	Лопатки загнуты вперед	0,3
(прямоугольного) сечения	, ,	Лопатки загнуты назад	0,2
Конфузор	$l = l / D_0 = 1,5$	Лопатки загнуты	0
	$n = (D_o / D_1)^2 = 0,4-0,7$	вперед	O
	$l = l / D_o = 1$		
	$n = (D_0 / D_1)^2 = 0.7$	Лопатки загнуты	0,3
	l = 1, 2; n = 0, 5	назад	0,4 0,1
	l = 1, 4; n = 0, 4		- 9
*	$n = (D_o / D_1)^2 = 1,5$		0,2
	$l = l / D_o = 0,5$		0,8
	n=2		
	n = 1, 5	Лопатки загнуты	0,15
Диффузор	l = 0,8	вперед	0,13
	n = 2 $n = 1,5$		
	l = 1,5 $l = 1,5$		0,2
\ \ \	n=2		0,3
	7, 2		
	n=1		0,5
	l = 0,8		0,8
	n=2	Лопатки загнуты	
	n = 1, 5	назад	
	l=1,4		0,3
	n=2		0,3

Окончание прил. 3

 $\label{eq:tau} \begin{picture}(200,0) \put(0,0){T a б л и ц а Π 3.12} \end{picture}$ Коэффициенты местных сопротивлений фасонных частей, размещенных на выходе вентилятора

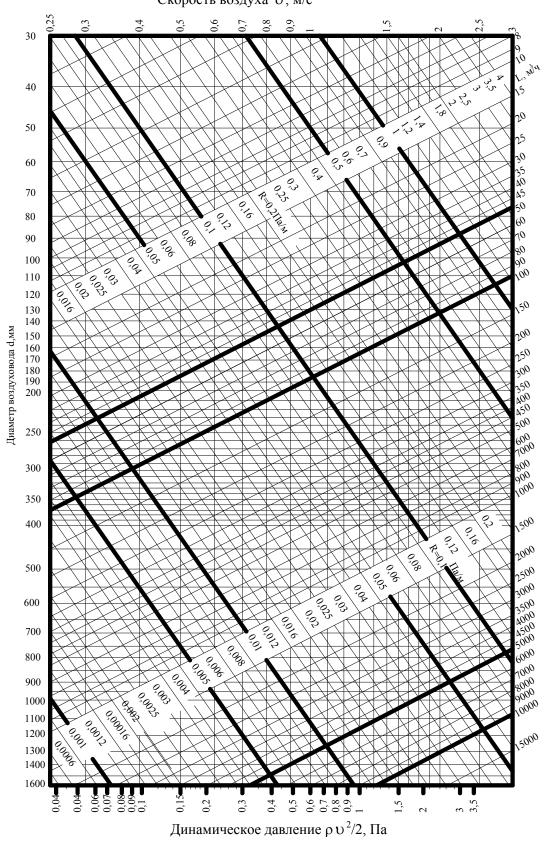
Фасонный элемент		еристика рузора $n = F/F_{o}$	Тип вентилятора	ζ
Плоский диффузор	1	1,2 1,5 1,8		0,1 0,2 0,5
F A	1,5	1,2 1,5 1,8 2	Лопатки загнуты вперед	0,05 0,1 0,2 0,35
F_0	2,5	1,2 1,5		0,1 0,15 0,4
	1	2,5 1,2 1,5 1,8		0,05 0,15 0,45
	1,5	1,2 1,5 1,8 2	Лопатки загнуты назад	0,05 0,2 0,3 0,4
Q°	2,5	1,2 1,5 2,5		0,15 0,15 0,4

Таблица Π 4 . 1 Размеры отверстий диаграмм для воздуховодов прямоугольного сечения

Приложение 4

ζ	Размеры отверстия диафрагмы, мм, при пересечении прямоугольного воздуховода, мм 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100×150 150×150 150×250 250×250 250×300 250×400 250×500 400×400 400×600 400×800 500×500 500×600 500×800													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	100×150	150×150	150×250	250×250	250×300	250×400	250×500	400×400	400×500	400×600	400×800	500×500	500×600	500×800
0,2	93×143	141×141	138×238	235×235	233×283	281×381	229×479	375×375	373×473	370×570	367×767	469×469	466×566	462×762
0,3	89×139	137×137	133×233	228×228	226×276	223×373	221×471	364×364	361×461	357×557	353×753	456×455	452×552	445×745
0,4	87×137	134×134	130×230	224×224	221×271	218×368	215×465	358×358	353×453	349×549	344×744	447×447	442×542	435×735
0,5	86×136	133×133	128×228	221×221	218×268	214×364	211×461	353×353	348×448	344×544	338×738	442×442	436×536	428×728
0,6	84×134	130×130	125×225	217×217	214×264	209×359	206×456	346×346	341×441	336×536	329×729	433×433	427×527	418×718
0,7	83×133	128×128	123×223	214×214	210×260	205×355	202×452	342×342	335×435	330×530	323×723	427×427	421×521	411×711
0,8	82×132	127×127	122×222	212×212	209×259	204×354	200×450	340×340	333×433	328×528	320×720	424×424	417×517	407×707
0,9	81×131	126×126	120×220	209×209	206×256	200×350	196×446	335×335	328×428	322×522	314×714	418×418	411×511	400×700
1,0	80×130	125×125	118×218	208×208	204×254	196×348	194×444	332×332	325×425	319×519	311×711	415×415	408×508	396×696
1,1	78×128	123×123	116×216	205×205	201×251	195×345	190×440	327×327	320×420	313×513	304×704	409×409	401×501	389×689
1,2	78×128	122×122	115×215	203×203			188×438							
1,3	77×127	121×121	114×214	202×202	197×247	191×341	186×436	323×323	314×414	307×507	298×698	403×403	394×494	382×682
1,4	76×126	120×120	113×213	200×200			184×434							
1,6	75×125	119×119	112×212	198×198			182×432							
1,8	74×124	117×117	109×209	195×195	190×240	183×333	178×428	312×312	303×403	296×496	285×685	391×391	381×481	366×666
2	72×122	115×115	107×207	192×192	187×237	179×329	174×424	307×307	297×397	289×489	278×678	384×384	374×474	358×658
2,2	72×122	114×114	106×206	190×190	185×235	177×327	172×422	305×305	294×394	286×486	275×675	381×381	370×470	355×655
2,4	70×120	112×112	103×203	187×187	182×232	173×323	168×418	299×299	288×388	280×480	268×668	374×374	363×463	347×647
2,6	69×119	111×111	102×202	185×185					285×385					
2,8	68×118	100×100	101×201	184×184			163×413							
3	68×118	109×109	100×200	182×182	176×226	167×317	161×411	291×291	279×379	270×470	258×658	364×364	352×452	334×634

Окончание табл. П4.1


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3,2	67×117	108×108	98×198	180×180	174×224	165×315	159×409	288×288	276×376	267×467	254×654	361×361	348×448	330×630
3,4	66×116	108×108	98×198	179×179	173×223	164×314	158×408	287×287	275×375	266×466	253×653	359×359	346×446	328×628
3,6	66×116	107×107	97×197	179×179	172×222	163×313	157×407	286×286	273×374	264×464	251×651	357×357	344×444	326×626
3,8	65×115	106×106	95×195	176×176	169×219	160×310	153×403	281×281	269×369	259×459	245×645	352×352	339×439	320×620
5	64×114	105×105	95×195	175×175	168×218	159×309	152×402	280×280	267×367	257×457	244×644	350×350	337×437	317×617
4,5	63×113	103×103	92×192	171×171	164×214	154×304	148×398	273×274	261×361	250×450	237×637	343×343	329×429	309×609
5	61×111	101×101	90×190	169×169	161×214	151×301	143×394	270×270	256×356	245×445	231×631	337×337	323×423	302×602
5,5	60×110		88×188	166×166						240×440				
6			87×187	164×164	156×206					237×437				
6,5	58×108		85×185	162×162	154×204				1	233×433				
7	57×107		84×184	160×160	152×202				1	229×429				
7,5		95×95	82×182	158×158						226×426				
8			80×180	155×155						220×420				
8,5	55×105	93×93	79×179							218×418				
9	54×104	91×91	78×178	152×152	143×193	132×282			†				287×387	
9,5	53×103	90×90	77×177		141×191					211×411				
10	52×102	89×89	76×176	149×149	140×190					209×409				
11	51×101	88×88	74×174	147×147	138×188					205×405				
12	50×100	86×86	72×172	144×144	134×184					199×399				
13	49×99	85×85	70×170	141×141						195×395				
14	48×98	84×84	70×170	140×140						193×393				
15	48×98	84×84	69×169	139×139	130×180	116×266	108×358	223×223	204×304	191×391	173×573	278×278	259×359	233×533

Окончание прил. 4

Таблица П4.2 Значения Р для диафрагм

/.	4	Значения P , Па, при скорости в воздухе, м/с														
υ_1/υ_2	6	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
							$\alpha = 20^{\circ}$	$(tg\alpha = 0,$	364)							
0,4	2,25	163,66	193,06	224,42	264,6	303,8	344,96	390,04	418,45	490,0	540,96	597,8	656,6	686,0	698,74	846,72
0,45	1,73	125,44	149,04	172,48	203,84	233,24	265,58	299,88	337,12	375,34	416,5	458,64	504,7	524,3	536,06	649,74
0,5	1,22	89,18	104,86	121,52	143,08	164,64	187,18	211,68	237,16	264,6	294,0	324,38	356,72	372,4	379,26	458,64
0,55	0,98	71,54	84,28	98,0	115,64	132,3	150,92	169,54	190,12	212,66	235,2	258,72	284,2	297,92	303,8	367,5
0,6	0,75	54,88	64,68	74,48	88,2	100,94	114,56	129,36	146,02	162,68	180,32	198,94	218,54	228,34	233,24	281,26
0,65	0,55	40,18	47,04	54,88	64,68	74,48	84,28	95,06	106,82	119,56	132,3	146,02	159,74	167,58	170,52	206,78
0,7	0,342	24,5	29,4	34,3	40,18	46,06	52,92	58,8	66,64	74,48	82,32	91,14	99,96	103,88	105,84	128,38
0,75	0,245	17,64	21,56	24,5	29,4	33,32	37,24	42,14	48,02	52,92	58,8	64,68	71,54	75,46	76,44	92,12
0,8	0,145	10,78	12,74	14,7	16,66	19,6	22,54	25,48	28,42	31,36	34,3	39,2	41,16	43,12	44,1	53,9

Номограмма для расчета круглых стальных воздуховодов Скорость воздуха υ, м/с

Приложение 6

Таблица Пб.1

Данные для подбора калориферов КСк 3

Массовая скорость	Коэффици	ент тепл	опередач				ги движе	ния тепл	поносит	еля по	Аэродинами-
движения воздуха во				тр	убкам w,	M/C					ческое
фронтальном сечении (ρυ)	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,2	сопротивление $P_{\rm a}$,
$H, \kappa \Gamma/(M^2c)$	٠,٢	0,5	٠,٠	0,5	0,0	٠,,	0,0	0,5	1	1,2	Па
1,5	26,69	28,58	29,98	31,14	32,11	32,96	33,69	34,35	34,98	36,07	12,73
2	30,27	32,41	34	35,31	36,42	37,37	38,2	38,96	39,67	40,9	21,56
2,5	33,36	65,72	37,46	38,91	40,13	41,18	42,1	42,93	43,72	45,07	32,43
3	36,13	38,68	40,58	42,14	43,47	44,6	45,6	46,5	47,35	48,82	45,3
3,5	38,65	41,39	43,42	45,09	46,51	47,72	48,79	79,75	50,66	52,23	60,08
4	40,98	43,88	46,03	47,8	46,03	50,59	51,72	52,74	53,71	55,37	76,73
4,5	43,12	46,18	48,44	50	51,89	53,24	54,43	55,5	58,2	58,27	95,2
5	45,16	48,35	50,72	52,68	54,33	55,75	57	58,12	59,19	61,02	115,47
5,5	47,08	50,41	52,88	54,92	56,65	58,13	59,42	60,6	61,71	63,62	137,5
6	48,91	52,38	54,94	57,06	58,85	60,39	61,74	62,95	66,11	66,1	161,26
6,5	50,66	54,24	56,9	59,09	60,95	62,54	63,93	65,2	66,39	68,45	186,73
7	52,32	56,03	31,03	61,03	62,95	64,6	66,04	67,34	68,58	70,7	213,89

Окончание прил. 6

Таблица Пб.2

Данные для подбора калориферов КСк 4

Массовая	Коэффі	ициент тег	ілопередач	геля по тр	убкам w,						
скорость					N	ı/c					
движения											Аэродинамическое
воздуха во											сопротивление $P_{\rm a}$,
фронтальном	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,2	Па
сечении (ρυ)	ŕ			ŕ	,			r		ŕ	
$H, \kappa \Gamma/(M^2c)$											
1,5	24,11	25,73	26,94	27,91	28,72	29,44	30,09	30,66	31,19	32,12	17,68
2	27,79	29,66	31,06	32,18	33,11	33,94	34,7	35,34	35,96	37,03	28,88
2,5	31,05	33,13	34,7	35,94	36,99	37,91	38,76	39,48	40,16	41,37	42,24
3	33,98	36,27	37,98	39,35	40,49	41,5	42,42	43,21	43,96	45,28	57,65
3,5	36,68	39,15	41	42,47	43,71	44,8	45,79	46,65	47,46	48,88	74,97
4	39,21	41,84	43,82	45,39	46,71	47,88	48,94	49,86	50,72	52,24	94,15
4,5	41,57	44,37	56,65	48,13	49,53	50,77	51,9	52,87	53,78	55,39	115,08
5	4,8	46,74	48,96	50,71	52,18	53,49	54,68	55,7	56,66	58,36	137,73
5,5	45,91	49	51,31	53,15	54,7	56,06	57,1	58,38	59,39	61,17	162,03
6	47,94	51,16	53,58	55,75	57,12	58,54	59,84	60,96	62,02	63,88	187,94
6,5	4,87	53,22	55,74	57,74	59,42	60,9	62,26	63,42	64,52	66,45	215,42
7	51,74	55,22	57,83	59,91	61,65	63,19	64,59	65,8	66,94	68,95	244,45

Приложение 7

Технические характеристики фильтров

Тип фильтра	Удельная воздушная нагрузка $L_{\rm H},$ ${ m M}^3/({ m M}^2 \cdot { m u})$	Начальное номинальное сопротивление фильтра, $\Delta P_{\scriptscriptstyle \rm H}$, Па	Превышение сопротивления фильтра над начальным ΔP , Па	$ m Удельная$ пылеемкость $q_{ m p},$ г/м 2	Эффективность очистки η, %	Начальная допустимая запыленность очищаемого воздуха, $c_{\rm H} {\rm Mr/M}^3$	Тип фильтрующего элемента	Площадь сечения одной ячейки, м ²	Пропускная способность одной ячейки, м ³ /ч	Класс очистки	Марка фильтра и его размер, мм	Регенерируемость
1	2	3	4	5	6	7	8	9	10	11	12	13
ФяР	7000	60	90	2400	80	1	Набор металлических сеток	0,26 0,08 0,17	1540 450 1000	G3 G2 G3 G2 G3	ФяР 514×514×32 ФяР 514×514×50 ФяР 287×287×25 ФяР 287×287×32 ФяР 287×592×25 ФяР 287×592×32	да
							COTOR	0,35 0,26 0,35	2700 1540 2700	G2 G3 G3 G3	ФяГ 287×392×32 ФяР592×592×25 ФяР 592×592×32 ФяР 514×514×48 ФяР 592×592×48	- - -

Окончание прил. 7

1	2	3	4	5	6	7	8	9	10	11	12	13												
ФяВ	7000	60	90	2400	00 80 1 Ha		Набор винилпластовых	0,26	1540	G3	ФяВ 514×514×32	да												
							сеток	0.26	1540	G3	ФяВ 514×514×50													
								0,26	1540 450	G3 G3	ФяП 514×514×32	_												
ПвФ	7000	70	80	350	80	0,3	Открытопористый пенополиуретан	0,08	1000	G3	ФяП 287×287×32 ФяП 287×592×32	да												
ТІКФ	7000		80	330	80			0,17	2700	G3	ФяП 287×392×32 ФяП 592×592×32	_ да												
								0,33	3300	G3	ФяП 392×392×32 ФяП 650×650×32													
																						G3	ФяУ 514×514×32	
ФяУ	7000	40	110	570	80	0,3	стекловолокно	0,26	1540	G3	ФяУ 514×514×48	нет												
								0,35	2700	G2	ФяУ 592×592×32													

ВАРИАНТЫ ИЗГОТОВЛЕНИЯ

ТУ 4861-038-00270366-96

- ◆ Общего назначения из оцинкованной* или углеродистой стали
- Общего назначения теплостойкие из углеродистой стали
- ◆ Коррозионностойкие из нержавеющей стали
- Коррозионностойкие теплостойкие из нержавеющей стали

ТУ 4861-040-00270366-96

- Взрывозащищенные из разнородных металлов.
- Взрывозащищенные теплостойкие из разнородных металлов.
- Взрывозащищенные из алюминиевых сплавов
- Взрывозащищенные коррозионностойкие из нержавеющей стали
- ♦ Взрывозащищенные коррозионностойкие теплостойкие из нержавеющей стали

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающей среды от минус 40°С до плюс 40°С (до плюс 45°С для вентиляторов тропического исполнения). Умеренный и тропический климат; 2-я и 3-я категории размещения. При защите двигателя от прямого воздействия солнечного излучения и атмосферных осадков для умеренного климата - 1-я категория размещения.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Взрывозащищенные из разнородных металлов (В)
- Взрывозащищенные теплостойкие из разнородных металлов (ВЖ) (Ж)
- Взрывозащищенные коррозионностойкие из нержавеющей стали (ВК1)
- Взрывозащищенные коррозионностойкие теплостойкие из нержавеющей стали (ВК1Ж)

	вное	ельный колеса	Двига	тель	Частота	Парам в рабоче		Macca	Вибр изолят	
Типоразмер вентилятора	Конструктивное исполнение	Относительный диаметр колеса	Типоразмер	Мощность, кВт	вращения рабочего колеса об/мин ⁻¹	Производи- тельность, м ³ /час	Полное давление, Па	вентиля- тора не более, кг	Тип	Кол- во
1	2	3	4 5		6	7	8	9	10	11
		1	АИМ63А4 АИМ63В2	0,25 0,55	1350 2750	0,45–0,85 0,85–1,75	170–110 720–440	31,5 31,5		
BP-86-77-2,5B		0,9	АИМ63А4 АИМ63А2	0,25 0,37	1350 2750	0,4–0,8 0,85–1,65	120–70 490–300	31,5 31,5		
BP-86-77-2,5ВЖ BP-86-77-2,5ВК1	1	0,95	АИМ63А4 АИМ63В2	0,25 0,55	1350 2750	0,44–0,85 0,9–1,75	150–95 620–380	31,5 31,5	BP-201	4
ВР-86-77-2,5ВК1Ж		1,05	АИМ63А4 АИМ71А2	АИМ63A4 0,25 1350 0,45-0,85 190		190–130 800–540	31,5 34,5			
		1,1	АИМ63А4 АИМ71А2	0,25 0,75	1350 2750	0,47–0,85 0,9–1,75	230–170 960–740	31,5 34,5		

Продолжение прил. 8

1	2	3	4	5	6	7	8	9	10	11
		1	АИМ63А4	0,25	1350	0,85-1,84	280–170	40		
		1	АИМ80А2	1,5	2750	1,8–4,0	120-680	49,5		
		0,9	АИМ63А4	0,25	1350	0,76–1,82	185–110	40		
BP-86-77-3,15B		0,9	АИМ71В2	1,1	2750	1,55–3,7	800–480	44,7		
ВР-86-77-3,15ВЖ	1	0,95	АИМ63А4	0,25	1350	0,76–1,82	185–110	40	BP-201	1
ВР-86-77-3,15ВК1Ж	1	0,93	АИМ80А2	1,5	2750	1,9–3,85	1080–640	50,6	DF-201	4
Dr-60-//-3,13DK1/K		1,05	АИМ63А4	0,25	1350	0,9-1,9	320–190	40		
		1,03	АИМ80В2	2,2	2750	1,7–4,0	1350-880	52,4		
		1 1	АИМ63В4	0,37	1350	0,9-1,9	380–220	39,8		
		1,1	АИМ80В2	2,2	2750	1,9–4,1	1650–1070	52,4		
			АИМ71А6	0,37	880	1,4-2,7	210-120	59	DD 201	4
		1	АИМ71В6	0,75	1380	2,2-4,1	2,2-4,1 500-300 59		BP-201	4
			АИM100L2	5,5	2850	4,3-8,3	2200-1250	107	BP-202	4
		0.0	АИМ71А6	0,37	880	1,2-2,6	140–75	59		
		0,9	АИМ71А4	0,55	1380	1,95–4,0	340–190	59		
DD 96 77 4			АИМ71А6	0,37	880	1,4-2,6	175–100	59		
BP-86-77-4		0,95	АИМ71А4	0,55	1380	2,3-4,0	430–250	59	BP-201	4
BP-86-77-4Ж BP-86-77-4К1	1		АИМ71В4	0,75	1380	2,3-4,0	430–250	60		
ВР-86-77-4К1Ж			АИМ71А6	0,37	880	1,3-2,75	230-140	59		
DP-80-//-4K1/K		1.05	АИМ71В4	0,75	1380	2,0-4,2	560-330	59		
		1,05	АИМ80А4	1,1	1380	2,0-4,2	560-330	65	DD 201	4
			АИМ112М2	7,5	2850	4,1-8,5	2380–1450	121	BP-201	4
			АИМ71А6	0,37	880	1,3-2,7	270–180	5	BP-201	4
		1,1	АИМ80А4	1,1	1380	2,1-4,2	670–440	59	DD 202	4
			АИМ112М2	7,5	2850	4,4–8,6	2900–1900	121	BP-202	4

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Взрывозащищенные из разнородных металлов (В)
- Взрывозащищенные теплостойкие из разнородных металлов (ВЖ) (Ж)
- Взрывозащищенные коррозионностойкие из нержавеющей стали (ВК1)
- Взрывозащищенные коррозионностойкие теплостойкие из нержавеющей стали (ВК1Ж)

	вное	ельный колеса	Двигатель	Ь	Частота	Парам в рабоч	метры ей зоне	Масса венти-	Вибр изолят	
Типоразмер вентилятора	Конструктивное исполнение	Относительный диаметр колеса	Типоразмер	Мощ- ность, кВт	вращения рабочего колеса об/мин ¹	Производи- тельность, м ³ /час	Полное давление, Па	лятора не более, кг	Тип	Кол- во
1	2	3	4	5	6	7	8	9	10	11
BP-86-77-5B BP-86-77-5BЖ BP-86-77-5BК1 BP-86-77-5BК1Ж	1	1 0,9 0,95 1,05	АИМ71В6 АИМ80А6 АИМ90L4 АИМ71В6 АИМ80В4 АИМ71В6 АИМ80В4 АИМ90L4 АИМ80А6 АИМ100S4	0,55 0,75 2,2 0,55 1,5 0,55 1,5 2,2 0,75 3	920 920 1420 920 1420 920 1420 1420 920 1420	2,75–4,1 2,75–5,6 4,3–8,6 2,4–5,3 3,6–8,2 2,8–5,6 4,5–5,3 4,5–8,7 2,7–5,6 4,2–8,5	340–315 340–215 810–500 230–140 550–340 280–170 700–680 700–400 370–270 880–620	99 106 137 99 106 99 105 131 107 142	BP-202	4
		1,1	АИМ80A6 АИМ100S4	1,1	920 1420	3,0-5,7 4,6-8,8	460–315 1100–730	108 142		

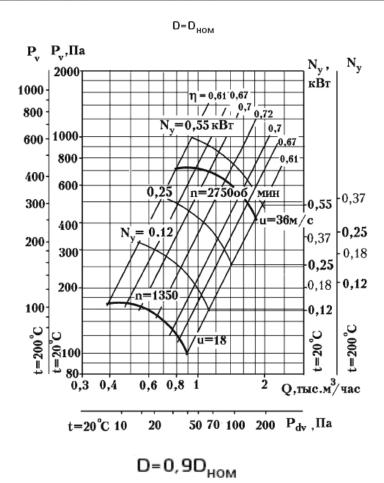
Продолжение прил. 8

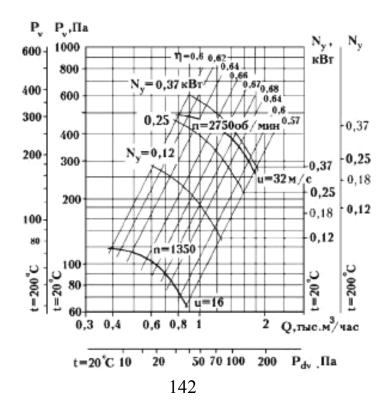
1	2	3	4	5	6	7	8	9	10	11
			АИM100L6	2,2	935	5,6–11,3	560–350	197	BP-202	6
		1	АИМ112М4	5,5	1435	8,6–12,0	1320-1250	210	DD 202	4
			АИM132S4	7,5	1435	8,6–17,5	1320-800	248	BP-203	4
			АИМ80В6	1,1	935	4,7–7,3	380–350	155	BP-202	6
		0,9	AИM90L6	1,5	935	4,7–11,0	380–230	178	Dr-202	<u> </u>
BP-86-77-6,3B		0,9	АИM100L4	4	1435	7,2–12,3	885–780	194	BP-203	4
ВР-86-77-6,3ВЖ	1		АИМ112М4	5,5	1435	7,2–17,0	885–530	208 BP-203		4
ВР-86-77-6,3ВК1Ж	1		AИM90L6	1,5	935	5,8-8,5	470–430	179	179 106 BP-202	
31 00 77 0,02111111		0,95	АИM100L6	2,2	935	5,8–11,5	470–280	196		6
			АИМ112М4	5,5	1435	9,0–17,5	1130–670	209	BP-203	4
		1,05	АИM100L6	2,2	935	5,4–11,5	510–400	198	BP-202	6
		1,03	АИМ132S4	7,5	1435	35 8,3–17,5 1430–940		249		
		1,1	АИМ112МА6	3	935	6,2–11,5	750–530	217	BP-203	4
		1,1	АИМ132М4	11	1435	9,2–17,8	1750–1200	249		
		1	АИМ132S6	5,5	960	12,0–17,0	950–880	338		
BP-86-77-8		1	АИМ132М6	7,5	960	12,0–23,0	950–580	338		
ВР-86-77-8Ж		0,9	АИМ112МВ6	4	960	9,5–17,0	640–570	289		
BP-86-77-8K1	1		АИМ132S6	5,5	960	9,5–23,0	640–380	338	BP-203	5
ВР-86-77-8К1Ж		0,95	АИM132S6	5,5	960	12,5–23,0	800–470	338		
DF-00-//-0K1/K		1,05	АИМ132М6	7,5	960	11,0–24,0	1020–720	337		
		1,1	АИМ160S6	11	960	13,0–24,0	1280–900	372		

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

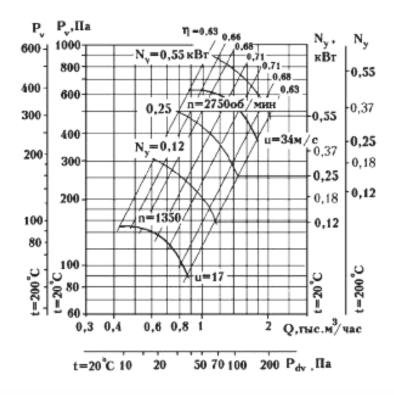
• Взрывозащищенные из алюминиевых сплавов (ВК3)

Типоразмер вентилятора	вное	льный	Двигатель		Частота	Парам в рабоче	-		Вибр изолят	
	Конструктивн исполнение	Относительный диаметр колеса	Типоразмер	Мощ- ность, кВт	вращения рабочего колеса, об/мин ¹	Производи- тельность, м ³ /час	Полное давление, Па	Масса вентилятора не более, кг	Тип	Кол- во
BP-86-77-2,5BK3	1	1	АИМ63А4 АИМ63В2	0,25 0,55	1350 2750	0,45–0,85 0,85–1,75	170–110 720–450	25 25	BP-201	4
BP-86-77-3,15BK3	1	1	АИМ63А4	0,25	1350	0,85–1,84	280–170	30	BP-202	4
ВР-86-77-4ВКЗ	1	1	АИМ71A6 АИМ71B4	0,37 0,75	880 1380	1,4–2,7 2,2–4,1	210–120 500–300	42 44	BP-201	4
ВР-86-77-5ВКЗ	1	1	АИМ71B6 АИМ80A6	0,55 0,75	920 920	2,75–4,1 2,75–5,6	340–315 340–215	79 85	BP-201	5
BP-86-77-6,3BK3	1	1	АИМ100L6	2,2	935	5,6–11,3	560–350	141	BP-202	4
BP-86-77-8BK3	1	1	АИМ132S6 АИМ132M6	5,5 7,5	960 960	10,5–17,0 10,5–24,0	950–870 950–550	227 254	BP-203	4

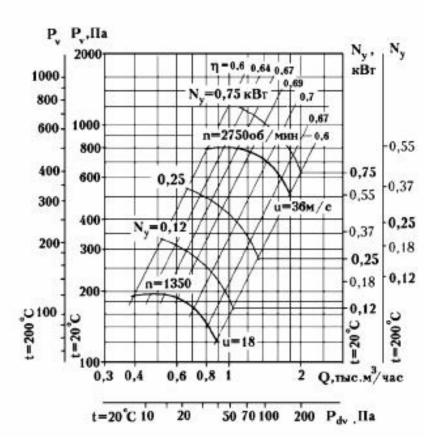

Продолжение прил. 8

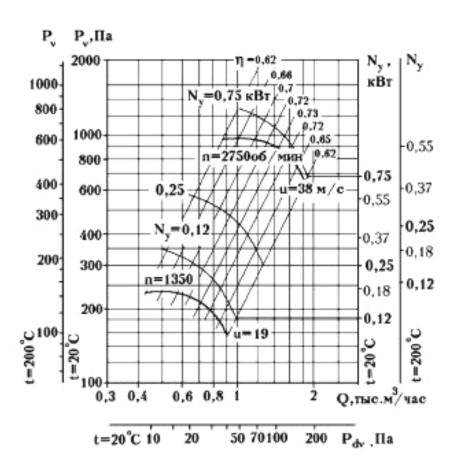

АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Вентилятор		Значения $L_{\mathrm{p}i}$, дБ, в октавных полосах f , Γ ц									
Вентивнор	n,	63	125	250	500	1000	2000	4000	8000	дБА	
BP-86-77-2,5	мин ⁻¹ 1350	58	61	69	62	60	58	50	41	67	
Dr-80-77-2,3	2750	70	73	76	84	77	75	73	65	84	
BP-86-77-3,15	1350	65	68	76	69	67	65	57	48	74	
Dr-80-77-3,13	2850	78	81	84	92	85	83	81	73	92	
	880	65	68	76	69	67	65	57	46	73	
BP-86-77-4	1380	74	77	85	78	76	74	66	57	82	
	2850	87	90	93	101	94	92	90	82	101	
BP-86-77-5	920	70	73	81	74	72	70	62	53	78	
DF-60-77-3	1420	81	84	92	85	83	81	73	64	89	
BP-86-77-6,3	935	78	81	89	82	80	73	70	61	86	
Dr-60-77-0,5	1435	89	92	100	93	91	89	81	72	97	
BP-86-77-8	960	88	91	99	92	90	88	80	71	96	

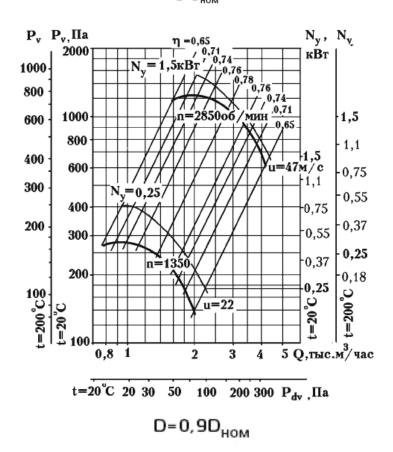

Акустические характеристики измерены со стороны нагнетания при номинальном режиме работы вентилятора на стороне всасывания на уровне звуковой мощности 3дБ и ниже уровней, приведенных в таблице.

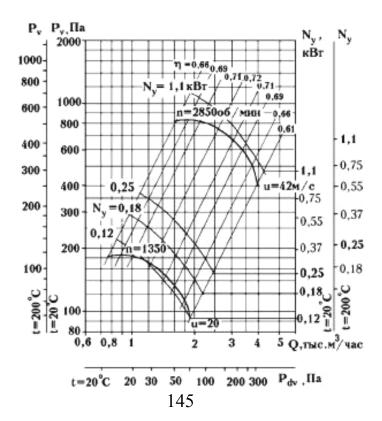
На границах рабочего участка аэродинамической характеристики уровни звуковой мощности 3 дБ выше уровня звуковой мощности, соответствующего номинальному режиму работы вентилятора.

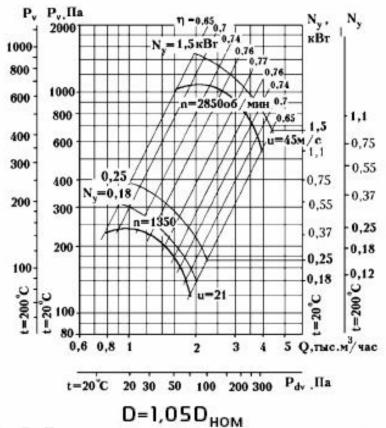


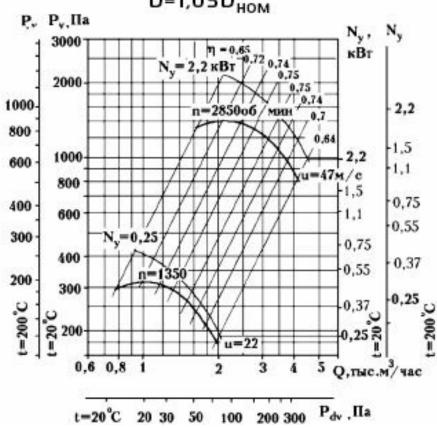


D=1,05D_{HOM}

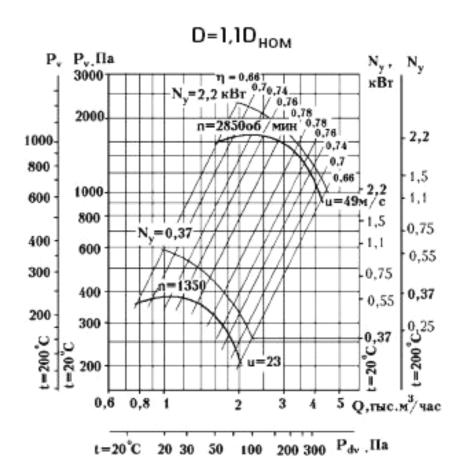


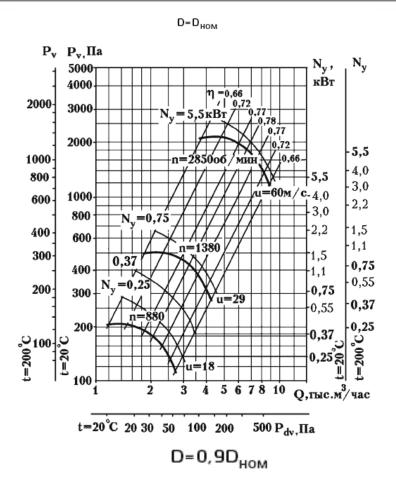

D=1,1D_{HOM}

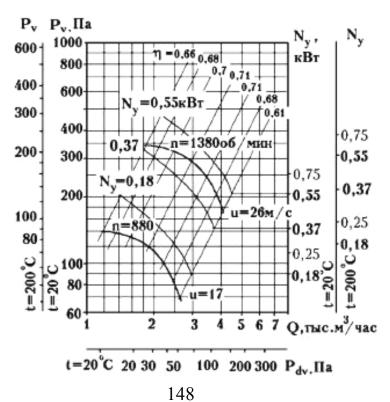


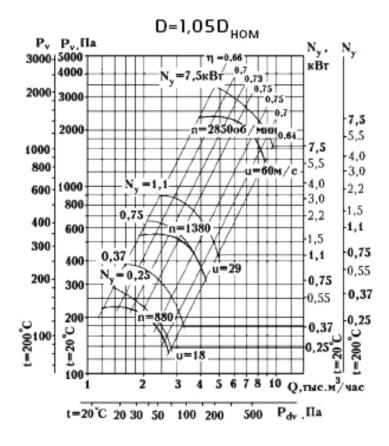

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВР-86-77-3,15 (для асинхронной частоты врашения)

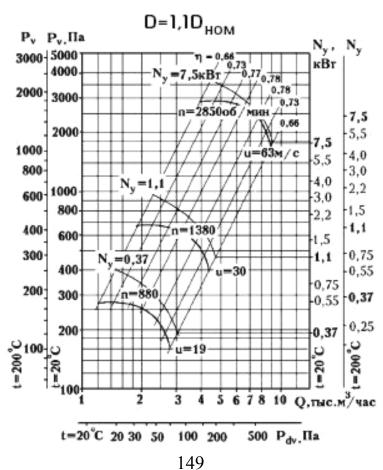
D=D_{HOM}



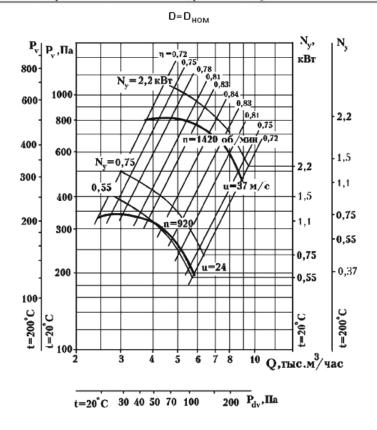


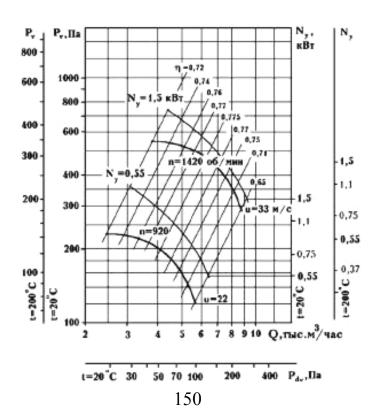


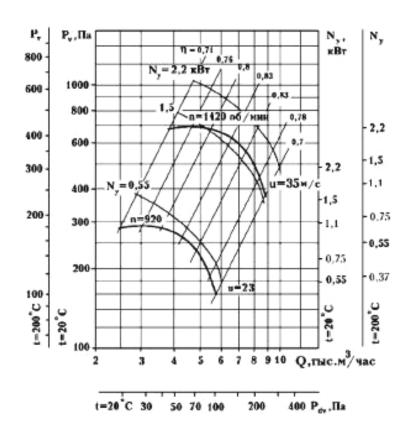

146

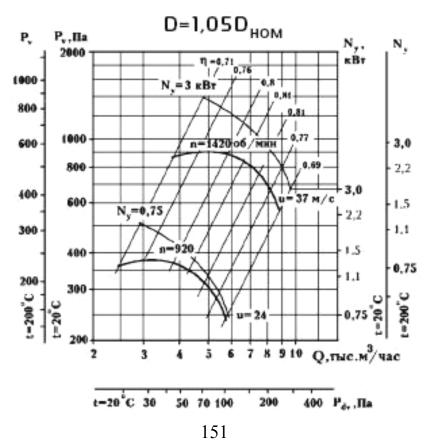


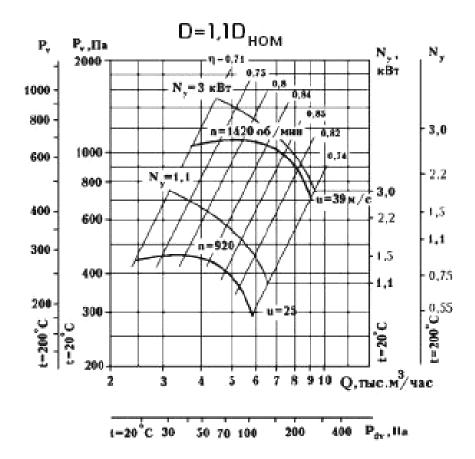
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВР-86-77-4 (для асинхронной частоты вращения)



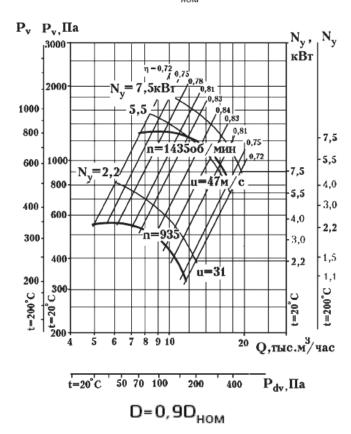


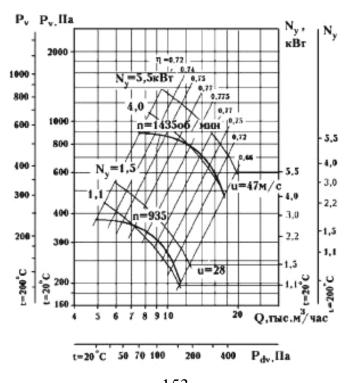

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВР-86-77-5 (для асинхронной частоты врашения)

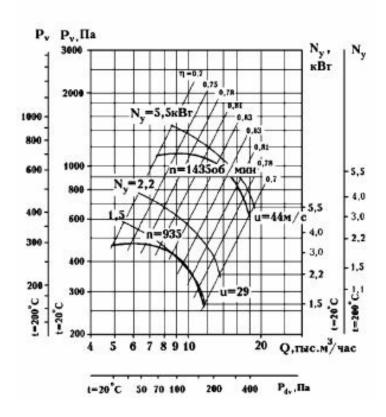


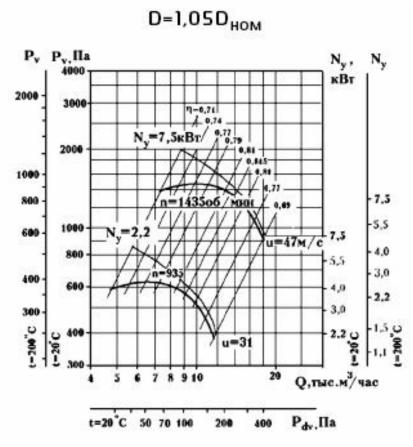

D=0,9D_{HOM}

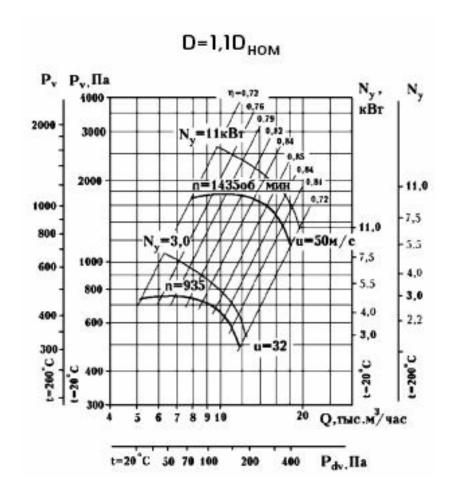
D=0,95D_{HOM}

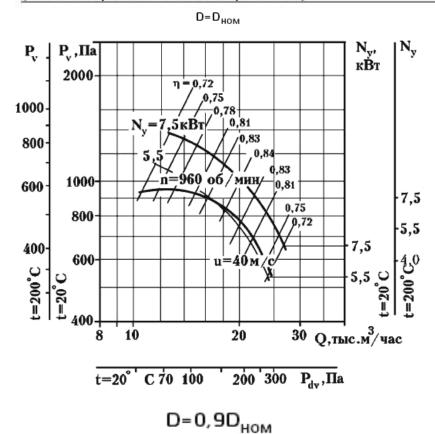


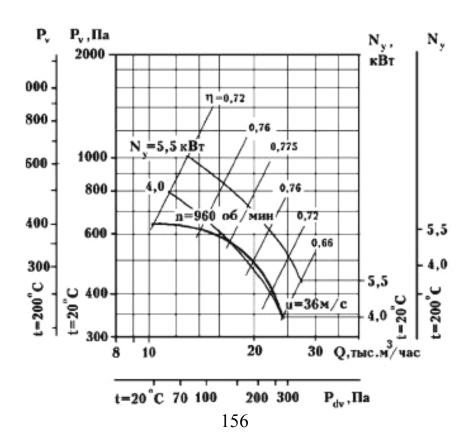


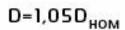


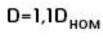

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВР-86-77-6,3 (для асинхронной частоты врашения)

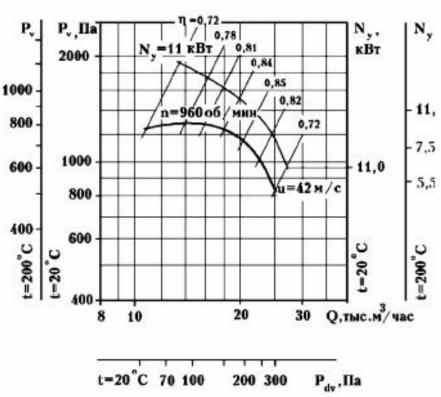

 $D=D_{HOM}$

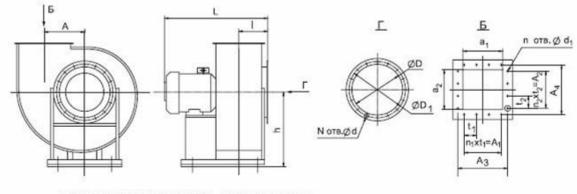




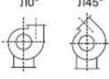



АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВР-86-77-8 (для асинхронной частоты вращения)

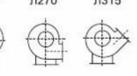




Окончание прил. 8


ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

ПОЛОЖЕНИЯ КОРПУСА ВЕНТИЛЯТОРА Правого вращения



Вентилятор		Размеры, мм																						
	h	1	L	A	D	D,	d	d,	d,	a,	a,	Α,	Α,	Α,	A,	t,	t,	C	C,	С,	N	n	n,	n,
BP-86-77-2,5	320	140	493	162	252	280	8,5x14	7	12	175	175	100	100	205	205	100	100	35	220	300	8	8	1	1
BP-86-77-3,15	410	162	552	205	318	345	8,5x14	7	12	221	221	200	200	255	255	100	100	84	220	400	8	12	2	2
BP-86-77-4	520	192	695	260	403	430	8,5x14	7	12	280	280	200	200	310	310	100	100	114	290	500	8	12	2	2
BP-86-77-5	650	252	740	324	510	530	7x14	7	15	350	350	300	300	380	380	100	100	104	410	480	16	16	3	3
BP-86-77-6,3	720	308	1000	410	640	660	7x14	7	15	441	441	400	400	470	470	100	100	125	460	520	16	20	4	4
BP-86-77-8	905	378	1170	520	820	850	7x14	11	15	560	560	600	600	600	600	150	150	135	606	600	16	16	4	4

Вентилятор	Пр0°,Л0°			Пр45°,Л45°			Пр90°,Л90°			Пр135°,Л135°			Пр270°,Л270°			Пр315°,Л315°		
	В	ь	Н	В	ь	Н	В	ь	Н	В	ь	Н	В	ь	Н	В	ь	Н
BP-86-77-2,5	465	189	198	408	173	335	417	220	276	535	204	235	417	219	189	539	204	173
BP-86-77-3,15	580	238	239	515	218	413	516	277	342	670	258	297	516	277	238	670	258	218
BP-86-77-4	728	301	291	648	273	500	642	351	428	856	322	376	642	351	301	856	322	273
BP-86-77-5	915	389	340	940	357	612	790	454	526	1032	420	482	790	454	389	1032	420	357
BP-86-77-6,3	1143	487	420	1052	447	760	985	564	656	1286	526	605	985	564	487	1286	526	447
BP-86-77-8	1450	614	533	1328	564	965	1247	714	836	1629	664	764	1247	714	614	1629	664	564

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	3
ВВЕДЕНИЕ	4
1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ВОЗДУХООБМЕНА В ОБЩЕСТВЕННЫХ ЗДАНИЯХ	5
1.1. Здания административных учреждений, проектных и научно-	5
исследовательских организаций	
1.2.1. Детские ясли-сады	
1.2.2. Общеобразовательные учреждения	
1.2.3. Лечебно-оздоровительные учреждения	
1.2.4. Культурно-зрелищные учреждения	
1.2.5. библиотеки, архивы и книгохранилища	
1.2.6. Предприятия бытового обслуживания населения	
1.2.7. Предприятия розничной торговли	
1.2.8. Спортивные сооружения	
2. ВЫБОР И РАСЧЕТ СИСТЕМ ВОЗДУХОРАСПРЕДЕЛЕНИЯ	.20
2.1. Основные сведения о приточных струях	.20
2.2. Рекомендуемые схемы воздухораспределения	.21
2.3. Методика расчета и подбора воздухораспределителей	
2.3.1. Подача воздуха настилающейся компактной приточной струей	
2.3.2 Подача воздуха сверху вниз наклонными струями	
2.3.3. Подача воздуха веерной струей	
2.3.4. Подача воздуха компактной асимметричной струей	
3. АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ ВОЗДУХОВОДОВ	.40
3.1. Аэродинамический расчет систем вентиляции с механическим	
	.40
3.2. Аэродинамический расчет систем вентиляции с естественным	5 (
побуждением движения воздуха	
4. ОБОРУДОВАНИЕ ВЕНТИЛЯЦИОННЫХ СИСТЕМ	
4.1. Устройства для воздухозабора и воздухоудаления	
4.1.1. Подбор жалюзийных решеток	
4.1.2. Подбор утепленных воздушных клапанов	
4.1.3. Подбор зонтов	
4.1.4. Подбор дефлекторов	
4.2. Подбор калорифера	
4.3. Подбор фильтра	
ЗАКЛЮЧЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	
ПРИЛОЖЕНИЯ	89

Учебное издание

Орлова Наталья Александровна Чичиров Константин Олегович

ВЕНТИЛЯЦИЯ ЗДАНИЙ ОБЩЕСТВЕННОГО НАЗНАЧЕНИЯ. КУРСОВОЕ И ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ

Учебное пособие

Редактор С.В. Сватковская

Верстка Т.А. Лильп

Подписано в печать 25.12.12. Формат $60\times84/16$. Бумага офисная «Снегурочка». Печать на ризографе. Усл.печ.л. 9,3. Уч.-изд.л. 10,0. Тираж 80 экз. Заказ №18.

