МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный университет архитектуры и строительства» (ПГУАС)

ОСНОВЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ ЗДАНИЙ И ГОРОДСКИХ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ

Методические указания по подготовке к зачёту для направления подготовки 08.03.01 «Строительство»

УДК 624.011.1 ББК 38.55 О-75

> Рекомендовано Редсоветом университета Рецензент – кандидат технических наук, доцент О.Л. Викторова (ПГУАС)

Основы расчёта и конструирования зданий и городских О-75 инженерных сооружений: метод. указания по подготовке к зачёту для направления подготовки 08.03.01 «Строительство» / Ю.М. Пучков. – Пенза: ПГУАС, 2016. – 16 с.

Представлены методические рекомендации, перечень вопросов для подготовки к зачёту, система тренинга и самопроверки знаний, список источников.

Методические указания подготовлены на кафедре «Городское строительство и архитектура» и предназначены для студентов, обучающихся по направлению подготовки 08.03.01 «Строительство».

[©] Пензенский государственный университет архитектуры и строительства, 2016

[©] Пучков Ю.М., 2016

ВВЕДЕНИЕ

В соответствии с государственным образовательным стандартом и рабочим учебным планом при изучении дисциплины Б1.В.ДВ.13 «Основы расчёта и конструирования зданий и городских инженерных сооружений» предусматривается сдача зачёта.

В данных методических указаниях приводятся методические рекомендации, перечень вопросов для подготовки к зачёту, система тренинга и самопроверки знаний, список источников.

Для успешной сдачи зачёта студент должен прослушать курс лекций, выполнить упражнения на практических занятиях, подготовить и успешно сдать курсовую работу, ответить на вопросы по курсу в день зачёта.

Для полного освоения курса и успешной сдачи зачёта рекомендуется обратить внимание на следующие вопросы из курса сопротивления материалов:

- 1. Схематизация элементов конструкций и внешних нагрузок.
- 2. Внутренние силы и напряжения.
- 3. Перемещения и деформации.
- 4. Метод определения внутренних усилий.
- 5. Внутренние усилия при растяжении и сжатии.
- 6. Основные типы опорных связей и балок. Определение опорных реакций.
- 7. Внутренние усилия при изгибе.
- 8. Закон Гука.
- 9. Геометрические характеристики поперечных сечений стержня.
- 10. Нормальные напряжения в поперечных сечениях стержня.
- 11. Плоский изгиб.
- 12. Косой изгиб.
- 13. Внецентренное растяжение-сжатие.
- 14. Касательные напряжения при изгибе.
- 15. Распределение касательных напряжений в сечениях балок.
- 16. Критерии прочности и пластичности.
- 17. Устойчивость сжатых стержней.
- 18. Формула Эйлера для критической силы.
- 19. Влияние способа закрепления концов стержня на значение критической силы.
 - 20. Концентрация напряжений.

Предусматривается выполнение курсовой работы на тему «Конструкция покрытия из дерева». При выполнении и сдаче курсовой работы, а также при подготовке к сдаче зачёта нужно обратить внимание на следующие вопросы:

1. Подбор сечения бруска обрешётки.

- 2. Проверка прочности и прогиба бруска обрешётки при косом изгибе.
- 3. Расчёт верхнего элемента фермы.
- 4. Расчёт лобовой врубки.
- 5. Расчёт упора.
- 6. Расчёт нижнего элемента фермы.
- 7. Расчёт нагельного соединения.

Подготовка к сдаче зачёта должна вестись в течение семестра систематически и планомерно. Для этого, как минимум, необходимо принять участие во всех учебных мероприятиях по курсу, постоянно заниматься самоподготовкой вне аудитории, успешно выполнять все задания по курсу. При этом следует иметь в виду, что особенности памяти человека допускают перерыв в занятиях самостоятельной работой по дисциплине (предмету) не более 3-4 дней.

Изучение методических указаний позволит сформировать компетенции: знание нормативной базы, принципов проектирования сооружений; владение методами проектирования конструкций в соответствии с заданием с использованием систем автоматизированного проектирования; способность разрабатывать техническую документацию и оформлять проектно-конструкторские работы в соответствии с нормативными документами; знание научно-технической информации по профилю деятельности; владение математическим моделированием и системами автоматизированного проектирования; способность внедрять результаты исследований и практических разработок.

1. ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТУ

Для подготовки к зачёту и успешной его сдачи необходимо усвоить вопросы, которые рассматривались на практических занятиях (см. выше), а также следующие:

- 1. Гвоздевые соединения. Особенности работы гвоздей.
- 2. Определение расчётной несущей способности одного «среза» нагеля.
- 3. Работа соединения на пластинчатых нагелях.
- 4. Работа соединения на цилиндрических нагелях.
- 5. Соединения на шпонках, работа соединения.
- 6. Лобовая врубка: расчёт и конструирование.
- 7. Виды соединений элементов из дерева. Требования к соединениям. Основные положения расчёта соединений.
 - 8. Расчёт внецентренно сжатых и сжато-изгибаемых деревянных элементов.
- 9. Расчёт внецентренно растянутых и растянуто-изгибаемых деревянных элементов.
 - 10. Расчёт деревянных элементов на поперечный и косой изгиб.
 - 11. Расчёт деревянных элементов на скалывание и смятие.
 - 12. Расчёт деревянных элементов на центральное сжатие.
 - 13. Расчёт деревянных элементов на центральное растяжение.
- 14. Базовые значения расчётных сопротивлений древесины сосны, ели. Коэффициенты условий работы.
- 15. Основы расчёта элементов деревянных конструкций по предельным состояниям.
- 16. Материалы, изготовленные на основе измельчённой древесины: ДВП, ДСП, ЦСП, арболит.
- 17. Композиционные древесные материалы (древесно-слоистые пластики).
 - 18. Работа древесины на смятие и сдвиг.
 - 19. Работа древесины на растяжение, сжатие, поперечный изгиб.
 - 20. Плотность древесины. Пороки древесины.
 - 21. Влияние влажности и температуры на свойства древесины.
 - 22. Анизотропия древесины и её реологические свойства.
 - 23. Строение и физико-механические свойства древесины.

2. СИСТЕМА ТРЕНИНГА И САМОПРОВЕРКИ ЗНАНИЙ

Для тренинга и самопроверки знаний удобно использовать тесты. Здесь приводятся тесты, а после них даются правильные ответы.

Тесты

- 1. Современный метод расчёта строительных конструкций:
- по допускаемым напряжениям;
- по разрушающим нагрузкам;
- по предельным состояниям;
- вероятностный метод;
- метод экспертных оценок.
- 2. Наибольшие показатели прочности древесины:
- сжатие и смятие по всей поверхности поперёк волокон;
- местное смятие поперёк волокон;
- сжатие и смятие вдоль волокон;
- растяжение вдоль волокон;
- растяжение поперёк волокон.
- 3. Наиболее надёжные и менее податливые соединения деревянных элементов:
 - гвоздевые:
 - на врубках;
 - на клеях;
 - нагельные с цилиндрическими нагелями;
 - нагельные с пластинчатыми нагелями.
- 4. Каким требованиям должны удовлетворять соединения деревянных элементов?
 - минимальное количество естественных пороков;
 - прочность соединения;
 - плотность соединения;
 - антисептирование соединяемых элементов;
 - вязкость соединения.
- 5. От чего зависит несущая способность лобовой врубки с одним зубом?
 - от несущей способности стяжных болтов;
 - от несущей способности опорных подкладок;
 - от несущей способности площадок смятия;
 - от несущей способности площадок скалывания;
 - от несущей способности ослабленных сечений на разрыв.

- 6. Какие условия являются расчётными для цилиндрических нагелей в соединениях элементов из древесины?
 - смятие древесины в средних элементах пакета;
 - срез нагеля;
 - смятие древесины в крайних элементах пакета;
 - разрыв нагеля;
 - изгиб нагеля.
- 7. При испытаниях деревянных образцов «чистыми» называют образцы:
 - на которых нет грязи;
 - которые хорошо отшлифованы;
 - без сучков.
 - 8. В древесине различают два вида влаги:
 - связанную и свободную;
 - гигроскопическую и капиллярную;
 - природную и внесённую извне;
 - живительную и вредную.
 - 9. При быстром действии нагрузок древесина:
 - сохраняет упругость и мало деформируется;
 - сохраняет упругость и сильно деформируется;
 - не сохраняет упругость и мало деформируется;
 - деформации существенно увеличиваются.
 - 10. При длительном действии нагрузки древесина:
 - сохраняет упругость и мало деформируется;
 - сохраняет упругость и сильно деформируется;
 - не сохраняет упругость и мало деформируется;
 - деформации существенно увеличиваются.
- 11. Каким свойством древесины объясняется провисание деревянных балок?
 - свойством мягкости;
 - свойством упругости;
 - свойством ползучести.
 - 12. При повышении влажности древесины её прочность:
 - остаётся неизменной;
 - повышается;
 - снижается.

	13. При повышении температуры древесины её прочность: – остаётся неизменной;
	– повышается;
	- снижается.
	14. Какая влажность древесины считается стандартной? - 12 %; - 5 %; - 20 %.
	 15. Клееная фанера ФСФ выпускается толщиной до: − 45 мм; − 18 мм; − 100 мм.
	16. Бакелизированная фанера выпускается толщиной до: – 45 мм; – 18 мм; – 100 мм.
	17. Массивная клееная древесина выполняется из досок толщиной до: — 45 мм; — 18 мм; — 100 мм; — 42 мм.
	18. Базовые породы древесины в строительстве: – берёза, дуб; – сосна, ель, кроме веймутовой; – ясень, клён; – вяз, осина.
тем	19. Базовые значения древесины хвойных пород взяты при значениях ипературы и относительной влажности воздуха: — до 35°C и 75 %; — до 50°C и 50 %; — до 50°C и 80 %; — до 20°C и 40 %.
	 20. Коэффициент условий работы m_п учитывает: – применение в конструкциях пород древесины, отличных от базовых;

– влияние влажностного режима эксплуатации конструкций;

- влияние режима нагружения конструкции.
- 21. Коэффициент условий работы $m_{\rm B}$ учитывает:
- применение в конструкциях пород древесины, отличных от базовых;
- влияние влажностного режима эксплуатации конструкций;
- влияние режима нагружения конструкции.
- 22. Коэффициент условий работы ти учитывает:
- применение в конструкциях пород древесины, отличных от базовых;
- влияние влажностного режима эксплуатации конструкций;
- влияние режима нагружения конструкции.
- 23. Деревянные элементы, работающие на центральное растяжение, рассчитывают:
 - по наименее ослабленному сечению;
 - по наиболее ослабленному сечению;
 - по сечению в средней части элемента.
- 24. Все ослабления деревянного элемента, которые расположены на участке длиной до 200 мм и положение которых по высоте поперечного сечения не совпадает, следует принимать:
 - не совмещёнными в одном сечении;
 - совмещёнными в одном сечении;
 - не влияющими на работу элемента.
 - 25. Короткими деревянными стержнями называют такие, у которых:
 - длина не превышает 7 наибольших размеров поперечного сечения;
 - длина не превышает 7 наименьших размеров поперечного сечения;
 - длина не превышает 17 наибольших размеров поперечного сечения.
 - 26. Виды ослаблений деревянных элементов:
 - круглые, прямоугольные;
 - выходящие на кромку, не выходящие на кромку;
 - сучки, косослой.
 - 27. Скалывание древесины бывает:
 - только вдоль волокон;
 - только поперёк волокон;
 - только под углом к волокнам;
 - вдоль волокон, поперёк волокон, под углом к волокнам.
 - 28.Смятие древесины бывает:
 - только вдоль волокон;

- только поперёк волокон;
- только под углом к волокнам;
- вдоль волокон, поперёк волокон, под углом к волокнам.
- 29. Коэффициент β=0,25 имеет такую величину:
- только при односторонней схеме скалывания;
- только при промежуточной схеме скалывания;
- независимо от схемы скалывания.
- 30. Коэффициент β =0,125 имеет такую величину:
- только при односторонней схеме скалывания;
- только при промежуточной схеме скалывания;
- независимо от схемы скалывания.
- 31. Формула $\sigma_{\rm u} = M / (W_{\rm HT} \cdot m_{\rm 0}) \le R_{\rm u}$ относится:
- к расчёту деревянных элементов на прочность по нормальным напряжениям при изгибе;
- к расчёту деревянных элементов на прочность по касательным напряжениям;
 - к расчёту деревянных элементов по прогибам.
 - 32. Формула $\tau = Q \, S \, / \, b \, I_{\text{бр}} \leq R_{\text{ск}}$ относится:
- к расчёту деревянных элементов на прочность по нормальным напряжениям при изгибе;
- к расчёту деревянных элементов на прочность по касательным напряжениям;
 - к расчёту деревянных элементов по прогибам.
 - 33. Косой изгиб это изгиб, при котором:
- направление действия силы совпадает с направлением одной из главных осей поперечного сечения элемента;
- направление действия силы не совпадает с направлением ни одной из главных осей поперечного сечения элемента;
- направление действия силы совпадает с геометрической осью поперечного сечения элемента.
- 34. В растянуто-изгибаемых и внецентренно растянутых деревянных элементах действуют изгибающий момент и растягивающее центрально приложенное усилие. Учитывают ли в расчётах дополнительный момент от растягивающей силы, который уменьшает основной момент?
 - да, так как он уменьшает основной момент;
- нет, не учитывают (в запас прочности), так как при растяжении сильно влияют пороки древесины, снижающие прочность деревянного элемента;
 - учитывают или нет, зависит от породы древесины.

- 35. С применением формулы $(N/F_{\rm pacu}) + (M_{\rm Д}/W_{\rm pacu}) \le R_{\rm c}$ производят расчёт на прочность:
- растянуто-изгибаемых и внецентренно растянутых деревянных элементов;
 - внецентренно сжатых и сжато-изгибаемых деревянных элементов;
 - центрально-сжатых деревянных элементов;
 - центрально-растянутых деревянных элементов.
- 36. Для увеличения поперечного сечения деревянных элементов применяют:
 - сращивание;
 - надставку;
 - сплачивание.
 - 37. Для увеличения длины деревянных элементов применяют:
 - сращивание;
 - надставку;
 - сплачивание.
 - 38. Допускаемый сдвиг податливых соединений деревянных элементов:
 - до 10 мм;
 - до 2 мм;
 - до 15 мм.
 - 39. Шпонки в соединяемых деревянных элементах работают:
 - на выдёргивание;
 - на изгиб;
 - на смятие и скалывание.
 - 40. Нагели в соединяемых деревянных элементах работают:
 - на выдёргивание;
 - на изгиб;
 - на смятие и скалывание.

Правильные ответы к тестам

- 1. По предельным состояниям.
- 2. Сжатие и смятие по всей поверхности поперёк волокон, сжатие и смятие вдоль волокон, растяжение вдоль волокон.
 - 3. Гвоздевые, на клеях, нагельные с цилиндрическими нагелями.
- 4. Минимальное количество естественных пороков, плотность соединения, вязкость соединения.

- 5. От несущей способности площадок смятия, от несущей способности площадок скалывания, от несущей способности ослабленных сечений на разрыв.
 - 6. Смятие древесины в средних элементах пакета.
 - Без сучков.
 - 8. Связанную и свободную, то есть гигроскопическую и капиллярную.
 - 9. Сохраняет упругость и мало деформируется.
 - 10. Деформации существенно увеличиваются.
 - 11. Свойством ползучести.
 - 12. Снижается.
 - 13. Снижается.
 - 14. 12 %.
 - 15. 45 мм.
 - 16. 18 мм.
 - 17. 42 мм.
 - 18. Сосна, ель, кроме веймутовой.
 - 19. До 35°С и 75 %.
 - 20. Применение в конструкциях пород древесины, отличных от базовых.
 - 21. Влияние влажностного режима эксплуатации конструкций.
 - 22. Влияние режима нагружения конструкции.
 - 23. По наиболее ослабленному сечению.
 - 24. Совмещёнными в одном сечении.
 - 25. Длина не превышает 7 наименьших размеров поперечного сечения.
 - 26. Выходящие на кромку, не выходящие на кромку.
 - 27. Вдоль волокон, поперёк волокон, под углом к волокнам.
 - 28. Вдоль волокон, поперёк волокон, под углом к волокнам.
 - 29. Только при односторонней схеме скалывания.
 - 30. Только при промежуточной схеме скалывания.
- 31. К расчёту деревянных элементов на прочность по нормальным напряжениям при изгибе.
- 32. К расчёту деревянных элементов на прочность по касательным напряжениям.

- 33. Направление действия силы не совпадает с направлением ни одной из главных осей поперечного сечения элемента.
- 34. Нет, не учитывают (в запас прочности), так как при растяжении сильно влияют пороки древесины, снижающие прочность деревянного элемента.
 - 35. Внецентренно сжатых и сжато-изгибаемых деревянных элементов.
 - 36. Сплачивание.
 - 37. Сращивание.
 - 38. До 2 мм.
 - 39. На смятие и скалывание.
 - 40. На изгиб.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СНиП 2.01.07-85. Нагрузки и воздействия [Текст]. М.: Госстрой СССР, 1988.
 - 2. СНиП II-25-80. Деревянные конструкции [Текст]. M., 1982.
- 3. Вдовин, В.М. Сборник задач и практические методы их решения по курсу «Конструкции из дерева и пластмасс» [Текст]: учебное пособие / В.М. Вдовин, В.Н. Карпов. М.: Изд-во Ассоциации строительных вузов, 2004. 144 с.
- 4. Конструкции из дерева и пластмасс [Текст]: учеб. для ВУЗов / Ю.В. Слицкоухов [и др.]; под ред. Г.Г. Карлсена и Ю.В. Слицкоухова. 5-е изд., перераб. и доп. М.: Стройиздат, 1986. 543 с.
- 5. Конструкции из дерева и платмасс [Текст]: учебник / Э.В Филимонов [и др.]. М.: Изд-во АСВ, 2004. 440 с.
- 6. Гринь, И.М. Строительные конструкции из дерева и синтетических материалов. Проектирование и расчёт [Текст]: учеб. пособие / И.М. Гринь, К.Е. Джан-Темиров, В.И. Гринь. 4-е изд., стер. М.: ИД Альянс, 2008. 221 с.

Пучков Юрий Михайлович

ОСНОВЫ РАСЧЁТА И КОНСТРУИРОВАНИЯ ЗДАНИЙ И ГОРОДСКИХ ИНЖЕНЕРНЫХ СООРУЖЕНИЙ

Методические указания по подготовке к зачёту для направления подготовки 08.03.01 «Строительство»

 Редактор
 М.А. Сухова

 Верстка
 Н.А. Сазонова

Подписано в печать 26.05.16. Формат 60×84/16. Бумага офисная «Снегурочка». Печать на ризографе. Усл.печ.л. 0,93. Уч.-изд.л. 1,0. Тираж 80 экз. Заказ № 361.

Издательство ПГУАС. 440028, г. Пенза, ул. Германа Титова, 28.