МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный университет архитектуры и строительства» (ПГУАС)

Т.А. Глебова, М.А. Чиркина, И.С. Пышкина

ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Учебно-методическое пособие к выполнению лабораторных работ по направлению подготовки 09.03.02 «Информационные системы и технологии»

УДК 681.32 ББК 32.973-018.1 Г53

Рекомендовано Редсоветом университета

Рецензент – доктор технических наук, профессор И.А. Гарькина (ПГУАС)

Глебова Т.А.

Г53 Теория принятия решений: учебно-методическое пособие к выполнению лабораторных работ по направлению подготовки 09.03.02 «Информационные системы и технологии»/ Т.А. Глебова, М.А. Чиркина, И.С. Пышкина. – Пенза: ПГУАС, 2016. – 52 с.

Рассмотрен математический аппарат, необходимый при решении задач теории принятия решений. Методические указания направлены на формирование общепрофессиональных компетенций, предусмотренных рабочей программой по дисциплине «Теория принятия решений».

Учебно-методическое пособие подготовлено на кафедре «Информационновычислительные системы» и предназначено для студентов, обучающихся по направлению подготовки 09.03.02 «Информационные системы и технологии».

[©] Пензенский государственный университет архитектуры и строительства, 2016

[©] Глебова Т.А., Чиркина М.А., Пышкина И.С., 2016

ПРЕДИСЛОВИЕ

Принятие решений — это научное направление, занимающееся построением рациональных схем выбора альтернатив, причем непосредственно под принятием решения понимается совокупность проектных процедур выбора наилучшего решения.

Теоретически существует три типа ситуаций, в которых принимаются решения. В условиях:

- **определенности**, когда имеется точная информация по всем параметрам проблемы используются различные методы оптимизации;
 - риска (вероятности наступления состояний природы известны);
- **неопределенности** (информация о вероятностях наступления состояний природы отсутствует).

Целью лабораторных работ по теории принятия решений (ТПР) является овладение принципами разработки и принятия оптимальных решений, а также методикой количественной оценки их эффективности.

Лабораторные работы помогают:

- научить углубленно анализировать проблемы, ставить и обосновывать задачи проектно-конструкторской деятельности с учетом методологических аспектов теории принятия решений;
- освоить опыт в решении задач принятия решений и получения новых прикладных результатов.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

• владение широкой общей подготовкой (базовыми знаниями) для решения практических задач в области информационных систем и технологий). К концу обучения студент должен:

Знать:

- классификацию задач теории принятия решений, этапы решения задач;
- концептуальную и математическую постановку, методы и алгоритмы решения детерминированных задач.

Уметь:

- формулирование и решение детерминированной задачи теории принятия решений методом ветвей и границ;
- выбирать принцип оптимальности.

Владеть:

- методами прикладного программного обеспечение для автоматизации вычислений при поиске решений детерминированных задач.
- способность использовать современные компьютерные технологии поиска информации для решения поставленной задачи, критического анализа этой информации и обоснования принятых идей и подходов к решению). К концу обучения студент должен:

Знать:

- классификацию, концептуальную и математическую постановку, методы и алгоритмы решения многокритериальных задач;
- классификацию, концептуальную и математическую постановку, методы и алгоритмы решения задач динамического программирования;
- классификацию и формальное описание конфликтных ситуаций с точки зрения теории игр.

Уметь:

- формулировать и решать детерминированные задачи методом динамического программирования;
- моделировать конфликтные ситуации в понятиях теории игр (теории принятия решений в конфликтных ситуациях);
 применять для решения игр аналитические и вычислительные методы.

Владеть:

- методами моделирования ситуации принятия решений в условиях неопределенности;
- методами построения структуры данных и алгоритмов решения задач теории игр.

Лабораторная работа 1 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ

1. Цель работы

Использование методов линейного программирования для решения конкретных производственных задач.

2. Учебные вопросы, подлежащие рассмотрению:

- Общая постановка задачи линейного программирования.
- Примеры задач, решаемых с помощью составления и расчета линейных математических моделей.
- Каноническая и стандартная формы представления задачи ЛП и сведение к ним.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Основные понятия и определения: задача оптимизации, виды критериев и их свойства, оптимальное решение.
 - Постановка задачи оптимизации.
 - Типы оптимальных решений.
 - Графический метод решения.

4. Порядок выполнения работы

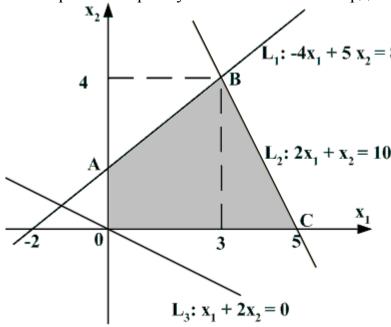
В задачах линейного программирования (ЛП) требуется найти экстремум линейной функции (целевой функции) при линейных ограничениях в виде равенств или неравенств. В виде задачи линейного программирования формулируются многочисленные задачи планирования в экономике, управления производственными и технологическими процессами, организации эффективной работы технических систем и другие.

Наиболее распространённым примером задачи линейного программирования является задача планирования работы предприятия, выпускающего однородный продукт. Необходимо:

- Сформулировать заданную задачу как задачу линейного программирования.
- Решить задачу графическим методом. Дать смысловую интерпретацию полученного решения.

Пример. Решить задачу линейного программирования:

$$f = x_1 + 2x_2 + 3 \rightarrow \max$$


$$\begin{cases}
-4x_1 + 5x_2 \le 8, \\
2x_1 + x_2 \le 10, \\
x_1 \ge 0, \quad x_2 \ge 0.
\end{cases}$$

Решение.

1. Заменим в ограничениях знаки "≤" на знак равно, получим уравнения двух прямых:

$$L_1: -4x_1 + 5x_2 = 8$$
, $L_2: 2x_1 + x_2 = 10$.

Построим эти прямые в прямоугольной системе координат:

- 2. Выделим область точек на плоскости, координаты которых удовлетворяют системе ограничений (на рисунке эта область 0ABC закрашена):
- первому ограничению удовлетворяют точки на плоскости, которые лежат ниже прямой L_1 , второму ограничению ниже прямой L_2 , третьему точки, находящиеся правее оси Ox_2 , четвёртому выше оси Ox_1
- 3. Отбросим свободный член в целевой функции, получим функцию $y = x_1 + 2x_2$, построим график этой функции (прямую L_3).
- 4. Перемещая прямую L_3 параллельно вверх, находим, что последней точкой области 0ABC, которую она пересечёт, будет точка B.
 - 5. Для нахождения координат точки В решаем систему уравнений:

$$\begin{cases} -4x_1 + 5x_2 = 8, \\ 2x_1 + x_2 = 10, \end{cases}$$

решение системы: $x_1 = 3$, $x_2 = 4$.

Вывод: максимальное значение целевой функции f равно $3+2\cdot 4+3=14$ и достигается при $x_1=3, x_2=4$.

Варианты заданий для самостоятельного решения.

Решить задачу графическим методом. Для всех вариантов X_1 и X_2 принимают неотрицательные значения

Вариант 1
$$3X_1 + 3X_2 <= 57$$
 $-12X_1 + 15X_2 <= 60$ $7X_2 <= 77$ $4X_2 >= 44$ $-12X_1 + 15X_2 >= 60$ $f(X) = 4X_1 - 6X_2 >$ max Bapuaht 2 $X_1 >= 5$ $X_1 + 3X_2 <= 10$ $X_1 + 4X_2 <= 120$ $X_1 + 12X_2 <= 204$ $X_1 + 12X_2 <= 204$ $X_1 + 12X_2 <= 204$ $X_1 + 12X_2 <= 63$ $X_1 + 3X_2 <= 200$ $X_1 + 3X_2 <= 300$ $X_1 + 3X_2 <= 200$ $X_1 + 3X_$

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку задачи линейного программирования, интерпретацию переменных задачи ЛП, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. – Пенза: ПГУАС, 2015. – 137 с.

2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. В чем заключаются особенность задач ЛП?
- 2. Что такое ограничения?
- 3. Какого вида бывает целевая функция?
- 4. Что такое область допустимых решений?
- 5. Может ли у задачи ЛП не быть решения?

Лабораторная работа 2 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. СИМПЛЕКС-МЕТОД РЕШЕНИЯ ЗЛП

1. Цель работы

Использование симплекс-метода для решения задач линейного программирования.

2. Учебные вопросы, подлежащие рассмотрению:

Общая постановка задачи линейного программирования.

Примеры задач, решаемых с помощью составления и расчета линейных математических моделей.

Каноническая и стандартная формы представления задачи ЛП и сведение к ним.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Постановка задачи оптимизации.
- Типы оптимальных решений.
- Симплекс метод решения задачи линейного программирования.

4. Порядок выполнения работы

Необходимо:

- Сформулировать заданную задачу как задачу линейного программирования.
- Решить задачу Симплекс методом. Дать смысловую интерпретацию полученного решения.

Пример. Максимизировать целевую функцию

$$f(X) = 3x1 + 5x2 \rightarrow \max$$

при ограничениях:

 $4000x1+5000 x2 \le 141000$,

 $0 \le x1 \le 19$,

$$0 \le x^2 \le 17$$
.

Решим эту задачу симплекс-методом. Приведем задачу к каноническому виду, введя 3 дополнительные переменные x3, x4, x5:

$$f(X) = 3x1 + 5 x2 + 0x3 + 0x4 + 0x5 \rightarrow \max$$

$$4000x1 + 5000 x2 + x3 = 141000,$$

$$x1 + x4 = 19,$$

$$x2 + x5 = 17,$$

$$x1 \ge 0, x2 \ge 0.$$

В качестве опорного плана выберем X0=(0, 0, 141000, 19, 17). Составим симплекс-таблицу.

Базис	План	x1	<i>x2</i>	<i>x3</i>	<i>x4</i>	<i>x5</i>	bj/aij
<i>x3</i>	141000	4000	5000	1	0	0	28,20
<i>x4</i>	19	1	0	0	1	0	
<i>x5</i>	17	0	1	0	0	1	17
f	0	-3	-5	0	0	0	

В последней оценочной строке есть отрицательные оценки, поэтому нужно делать шаг симплекс-метода. Выбираем столбец с наименьшей оценкой, а затем разрешающий элемент — по наименьшему отношению свободных членов к коэффициентам столбца (последний столбец). Результат шага запишем в таблицу (разрешающий элемент будем выделять жирным). Аналогично будем повторять шаги, пока не придем к таблице с неотрицательными оценками.

Базис	План	xI	<i>x</i> 2	<i>x3</i>	<i>x4</i>	<i>x5</i>	bj/aij
<i>x3</i>	56000	4000	0	1	0	-5000	14,00
<i>x4</i>	19	1	0	0	1	0	19,00
<i>x2</i>	17	0	1	0	0	1	
f	85	-3	0	0	0	5	

Базис	План	x1	<i>x2</i>	x3	<i>x4</i>	x5
<i>x1</i>	14	1	0	1/4000	0	-5/4
x4	5	0	0	-1/4000	1	5/4
x2	17	0	1	0	0	1
f	127	0	0	3/4000	0	5/4

В последнем плане строка f не содержит отрицательных значений, план x1 = 14, x2 = 17 оптимален, целевая функция принимает значение 127.

Варианты заданий для самостоятельного решения.

Решить задачу симплекс — методом. Для всех вариантов X_i принимают

неотрицательные значения

псотр	ицательные значения		
№	ЗАДАНИЕ	$N_{\underline{0}}$	ЗАДАНИЕ
1	15X1+11X2+14X3≤6	6	12X1+15X2+11X3≤11
	14X1+11X2+ 3X3≤ 4		$18X1 + 2X2 + 16X3 \le 9$
	$1X1+12X2+15X3 \le 3$		19X1+15X2+ 3X3≤12
	$F(X)=13X1+11X2+13X3 \rightarrow max$		$F(X)=12X1+6X2+8X3 \rightarrow max$
2	13X1+10X2+ 7X3≤12	7	3X1+19X2+ 8X3≤16
	3X1+19X2+ 2X3≤5		14X1+12X2+ 6X3≤16
	6X1+4X2+13X3≤18		4X1+ 7X2+14X3≤12
	$F(X)=11X1+12X2+12X3 \rightarrow max$		$F(X) = 3X1 + 7X2 + 8X3 \rightarrow max$
3	12X1+ 9X2+18X3≤18	8	$10X1+4X2+1X3 \le 8$
	11X1+8X2+1X3≤7		11X1+14X2+11X3≤15
	11X1+16X2+11X3≤14		$3X1 + 2X2 + 6X3 \le 4$
	$F(X)=10X1+12X2+11X3 \rightarrow max$		$F(X)=12X1+10X2+7X3 \rightarrow max$
4	16X1+ 5X2+ 2X3≤11	9	18X1+ 1X2+ 9X3≤ 7
	14X1+19X2+ 4X3≤16		16X1+19X2+ 1X3≤ 3
	2X1+ 5X2+16X3≤17		16X1+17X2+14X3≤12
	$F(X) = 7X1 + 8X2 + 12X3 \rightarrow max$		$F(X)=14X1+11X2+8X3 \rightarrow max$
5	6X1+19X2+ 5X3≤ 7	10	17X1+ 7X2+10X3≤18
	13X1+ 4X2+11X3≤12		1X1+ 2X2+12X3≤16
	7X1+ 4X2+12X3≤13		6X1+16X2+ 1X3 9
	$F(X) = 9X1 + 14X2 + 11X3 \rightarrow max$		$F(X) = 7X1 + 15X2 + 10X3 \rightarrow max$

1. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку задачи линейного программирования, интерпретацию переменных задачи ЛП, результаты ее решения, а также выводы по результатам решения.

2. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С.Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015.—137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

3. Контрольные вопросы

- 1. Что такое математическое и линейное программирование?
- 2. Какова общая форма записи модели ЛП?
- 3. Что такое допустимое и оптимальное решения?
- 4. Каковы основные этапы построения математической модели ЛП?
- 5. В чем особенности симплекс метода?
- 6. Может ли в ограничениях присутствовать неравенства при решении задачи симплекс методом?
- 7. Могут ли, при решении задачи симплекс методом, присутствовать отрицательные переменные?

Лабораторная работа 3 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. РЕШЕНИЕ ЗЛП С ПОМОЩЬЮ СРЕДСТВ MS EXCEL. ДВОЙСТВЕННЫЕ ЗЛП

1. Цель работы

- 1. Решение ЗЛП с помощью средств MS Excel.
- 2. Построение двойственных ЗЛП.

2. Учебные вопросы, подлежащие рассмотрению:

- Математическая модель задачи.
- Решение полученной экстремальной математической задачи.
- Интерпретация ответа.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Основные понятия и определения: задача оптимизации, виды критериев и их свойства, оптимальное решение.
 - Постановка задачи оптимизации.
 - Типы оптимальных решений.
 - Решение ЗЛП с помощью средств MS Excel.

4. Порядок выполнения работы

Необходимо:

- Сформулировать заданную задачу как задачу линейного программирования.
- Решить задачу ЛП с помощью средств MS Excel. Дать смысловую интерпретацию полученного решения.

Пример 1.

Решить ЗЛП с помощью средств MS Excel

$$Z=3x_1+2x_2 o \max$$

$$\begin{cases} 2x_1+3x_2\le 21 \\ x_1+x_2\le 8 \\ 2x_1+x_2\le 12 \\ x_1\le 5 \end{cases}$$
 — математическая модель задачи.

Решение экстремальной задачи:

Для решения задачи воспользуемся возможностями Microsoft Excel.

- Откройте Microsoft Excel.
- В ячейки первой строки (в данном случае A1 и B1) введите обозначения имеющихся в задаче переменных x_1 , x_2 (язык и шрифт значения не имеют, т.к. обозначения необходимы для понимания смыслов соответствующих им чисел).
- В ячейки второй строки (в данном случае A2 и B2), соответствующие заполненным ячейкам первой, введите произвольные значения переменных (для простоты возьмем значения 1, хотя на самом деле это могут быть любые числа). Тем самым мы присваиваем x_1 и x_2 пока значения 1.

В ячейку А4 введите обозначение целевой функции Z=.

- В ячейку В4 введите формулу вычисления целевой функции из математической модели задачи
- $(Z = 3x_1 + 2x_2)$, подставляя вместо x_1 и x_2 , соответствующие им значения из ячеек A2 и B2. (введение формулы начинается со знака =)

В ячейки А5 и В5 введите соответственно слова: А5 – Ограничение, В5 – Правая часть ограничения.

- В ячейку А6 введите формулу вычисления левой части первого ограничения $2x_1 + 3x_2$, подставляя вместо x_1 и x_2 , соответствующие им значения из ячеек А2 и В2.
 - В ячейку В6 введите свободный член первого ограничения 21.
- Аналогично в ячейку A7 введите формулу вычисления левой части второго ограничения $x_1 + x_2$, а в B7 его свободный член 8; в ячейку A8 введите формулу вычисления левой части третьего ограничения $2x_1 + x_2$, а в B8 его свободный член 12; в ячейку A9 введите формулу вычисления левой части четвертого ограничения x_1 , а в B9 его свободный член 5.

Таким образом, мы ввели все данные условия задачи в компьютер и подготовились к тому, чтобы задачу решить.

Выберите команду Поиск решения.

■ В этой команде вам будет предложено установить целевую ячейку. Введите это значение, щелкнув левой кнопкой мышки на ячейке В4 (содержащей в данном случае числовое значение целевой функции). Т.к. в данной задаче функция Z исследуется на максимум, то оставляем *Равной:* • максимальному значению.

Если решаем задачу на минимум, то нужно поставить метку перед словами *минимальному* значению.

■ Далее нажмите на стрелку, расположенную в правой части пространства ячейки *Изменяя ячейки*.

В полученное пространство необходимо ввести диапазон изменяющихся в задаче переменных (т.е. ячейки, содержащие числовые значения x_1 и x_2 , т. к. именно x_1 и x_2 могут принимать различные числовые значения, среди которых мы и пытаемся отыскать оптимальное решение задачи).

■ После этого заполняют пространство ячейки *Ограничения:* Для чего нужно щелкнуть по кнопке *Добавить*, в результате чего на экране появится новое окно.

В *Ссылка на ячейку:* введите номер ячейки, содержащей левую часть ограничения (в данном случае для первого ограничения – это ячейка А6).

Выберите знак ограничения в соответствии с математической моделью из предлагаемых вариантов (в данном случае \leq =, т.к. первое ограничение со знаком \leq)

В *Ограничение*: введите номер ячейки, содержащей свободный член ограничения (в данном случае для первого ограничения – это ячейка В6).

Нажимаем кнопку *Добавить* и аналогичным образом введим второе, третье и четвертое ограничения.

• Но после того, как все ограничения системы введены, еще рано нажимать OK, т.к. в математической модели имеется условие неотрицательности переменных ($x_1 \ge 0$; $x_2 \ge 0$), а в описании задачи для компьютера оно еще не упоминалось.

Поэтому после введения последнего ограничения вновь нажмите кнопку **Добавить** и в **Ссылка на ячейку:** введите номер ячейки, содержащей числовое значение x_1 ; выберите знак >=; а в **Ограничение:** введите 0.

Еще раз нажмите **Добавить** и аналогичным образом создайте условие неотрицательности для x_2 .

- Таким образом, компьютер получил все те ограничения, которые есть в условии задачи, поэтому теперь можно нажать *ОК*, *Выполнить и Сохранить найденное решение*.
 - Получим значения x_1 , x_2 и Z.

 $x_1 = 4; \ x_2 = 4; \ Z = 20 - Это и есть найденное оптимальное решение задачи.$

Пример 2. Пусть исходная задача имеет вид:

$$F = 2x_1 + 3x_2 + x_3 \rightarrow \max$$

$$\begin{cases} x_1 - x_2 + 2x_3 \le 2 \\ 2x_1 + x_2 - 3x_3 \le 4 \end{cases}$$

$$\begin{cases} 5x_1 - x_2 + x_3 \le 3 \\ 11x_1 + x_2 + 2x_3 \le 1 \end{cases}$$

$$x_j \ge 0, \ j = \overline{1;3}$$

Нужно составить к ней двойственную.

Решение. Запишем расширенную матрицу системы ограничений и транспонируем ее.

	1	-1	2	2		1	2	5	11	2
	2	1	-3	4	4T-	-1	1	-1	1	3
A =	5	-1	1	3	$A^{\prime}=$	2	-3	1	2	1
	11	1	2	1		2	4	3	1	min
	2	3	1	max						

Теперь запишем двойственную задачу по A^T с переменными y_i , $i = \overline{1;4}$.

$$Z = 2y_1 + 4y_2 + 3y_3 + y_4 \rightarrow \min$$

$$\begin{cases} y_1 + 2y_2 + 5y_3 + 11y_4 \ge 2 \\ -y_1 + y_2 - y_3 + y_4 \ge 3 \\ 2y_1 - 3y_2 + y_3 + 2y_4 \ge 1 \end{cases}$$

$$y_i \ge 0, \ i = \overline{1;4}.$$

Варианты заданий для самостоятельного решения.

Решить задачу с помощью средств MS Excel. Для всех вариантов X_i принимают неотрицательные значения.

	пот пеотрицательные зна тепни:		
No	ЗАДАНИЕ	$N_{\underline{0}}$	ЗАДАНИЕ
1	10X1+ 2X2+10X3≤10	6	3X1+ 9X2+12X3≤11
	2X1+18X2+ 6X3≤16		$5X1+17X2+2X3 \le 6$
	8X1+11X2+ 5X3≤12		$12X1+3X2+3X3 \le 5$
	$F(X)=18X1+14X2+15X3 \rightarrow max$		$F(X) = 5X1 + 14X2 + 16X3 \rightarrow max$
2	$7X1+3X2+17X3 \le 5$	7	19X1+ 3X2+13X3≤14
	$6X1+11X2+10X3 \le 6$		11X1+11X2+16X3≤12
	$1X1+18X2+14X3 \le 6$		$6X1+11X2+2X3 \le 7$
	$F(X) = 3X1 + 16X2 + 14X3 \rightarrow max$		$F(X)=13X1+14X2+9X3 \rightarrow max$
3	1X1+19X2+14X3≤18	8	$4X1+15X2+5X3 \le 6$
	$3X1 + 5X2 + 9X3 \le 9$		$7X1+2X2+17X3 \le 7$
	8X1+ 7X2+ 3X3≤16		15X1+19X2+ 7X3≤16
	$F(X) = 8X1 + 15X2 + 19X3 \rightarrow max$		$F(X) = 8X1 + 8X2 + 16X3 \rightarrow max$

4	11X1+18X2+15X3≤16	9	10X1+2X2+14X3≤13
	17X1+ 1X2+ 8X3≤14		6X1+ 7X2+15X3≤16
	10X1+11X2+ 5X3≤10		8X1+15X2+4X3≤19
	$F(X) = 8X1 + 7X2 + 7X3 \rightarrow max$		$F(X)=13X1+5X2+17X3 \rightarrow max$
5	16X1+ 2X2+ 9X3≤13	10	9X1+16X2+11X3≤8
	17X1+ 6X2+ 5X3≤16		1X1+ 1X2+14X3≤ 2
	6X1+ 7X2+19X3≤13		$9X1 + 2X2 + 3X3 \le 3$
	$F(X)=19X1+6X2+12X3 \rightarrow max$		$F(X) = 6X1 + 10X2 + 8X3 \rightarrow max$

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку прямой и двойственной задачи линейного программирования, интерпретацию переменных прямой и двойственной задач, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/—Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.—56 с.— Режим доступа: http://www.iprbookshop.ru/29703.—ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Прямая и двойственная задачи линейного программирования.
- 2. Теоремы двойственности.
- 3. Каковы основные этапы решения задач ЛП в MS Excel?
- 4. Каков вид и способы задания формул для целевой ячейки и ячеек левых частей ограничений?
 - 5. В чем смысл использования символа \$ в формулах MS Excel?
 - 6. В чем различие использования в формулах MS Excel символов; и :?
- 7. Почему при вводе формул в ячейки ЦФ и левых частей ограничений в них отображаются нулевые значения?
 - 8. Каким образом в MS Excel задается направление оптимизации ЦФ?
- 9. Какие ячейки экранной формы выполняют иллюстративную функцию, а какие необходимы для решения задачи?
- 10. Как наглядно отобразить в экранной форме ячейки, используемые в конкретной формуле, с целью проверки ее правильности?
 - 11. Поясните общий порядок работы с окном "Поиск решения".
- 12. Каким образом можно изменять, добавлять, удалять ограничения в окне "Поиск решения"?

Лабораторная работа 4 РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ МЕТОДОМ ПОТЕНЦИАЛОВ

1. Цель работы

Использование методов линейного программирования для решения транспортных задач.

2. Учебные вопросы, подлежащие рассмотрению:

- Постановка транспортной задачи линейного программирования.
- Примеры задач, решаемых с помощью составления и расчета линейных математических моделей.
 - Метод потенциалов решения транспортной задачи.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Формулировка транспортной задачи.
- Нахождение начального опорного плана транспортной задачи.
- Метод потенциалов решения транспортной задачи.
- Нахождение оптимального плана транспортной задачи.

4. Порядок выполнения работы

Наиболее распространённым примером задачи линейного программирования является задача планирования работы предприятия, выпускающего однородный продукт. Необходимо:

- Построить модель задачи, включая транспортную таблицу.
- Найти оптимальное решение задачи с помощью метода потенциалов и средств MS Excel.
 - Оформить отчет по лабораторной работе.
 - **1.** Решение транспортной задачи методом потенциалов. Пример.

b _i	150	130	150	140
200	7	8	1	2
180	4	5	9	8
190	9	2	3	6

1. Проверим, является ли данная задача замкнутой.

Подсчитаем суммарные запасы груза и суммарные потребности заказчиков

$$\sum_{i=1}^{3} a_i = 200 + 180 + 190 = 570, \ \sum_{j=1}^{4} b_j = 150 + 130 + 150 + 140 = 570$$

Поскольку $\sum a_i = \sum b_j$, модель транспортной задачи замкнутая, и задача имеет оптимальный план.

2. Построим первый опорный план транспортной задачи методом северо-западного угла.

Начинаем заполнение распределительной таблицы с верхней левой клетки, то есть построение исходного опорного плана начинаем с удовлетворения потребностей первого потребителя b1 за счет запасов первого поставщика a1. Для этого сравниваем запас a1 = 200 с потребностями b1 = 150. Так как a1 > b1, то потребности b1 полностью удовлетворяем за счет a1, и в первую клетку помещаем min (200, 150)=150. У первого поставщика осталось 50 единиц груза. Так как потребности первого получателя груза полностью удовлетворены, исключим из рассмотрения первый столбец, заполнив в нем оставшиеся клетки точками. Далее заполняем таблицу по строкам слева направо и сверху вниз. Следующая самая верхняя левая незаполненная клетка – (1,2). Потребителю b2 поставляем 50 единиц груза, оставшихся у первого поставщика. Поскольку от первого поставщика весь груз вывезен, заполняем оставшиеся клетки первой строки точками. Второму получателю, пока что, недопоставлено 80 единиц груза. Следующая незаполненная клетка – (2,2). Потребителю b2 отправляем недостающие 80 единиц груза, при этом его потребности полностью удовлетворены, поэтому оставшиеся клетки во втором столбце заполняем точками. У второго поставщика а2 осталось еще 100 единиц груза. Аналогичным образом заполняем оставшиеся клетки, пока не удовлетворим всех потребителей и не вывезем все запасы груза у поставщиков.

a _i b _j	150	130	150	140
200	7 150	8 50	1 *	2
180	* 4	5 80	9 100	8
190	* 9	2	3 50	6 140

В результате распределения груза получим первый опорный план, в котором x11 = 150, x12 = 50, x22 = 80, x23 = 100, x33 = 50, x34 = 140. Эти переменные соответствуют заполненным клеткам и являются базисными, остальные переменные, соответствующие клеткам с точками, являются свободными (значения свободных переменных равны нулю). Первый опорный план можно представить в матричном виде

$$X_1 = \begin{pmatrix} 150 & 50 & 0 & 0 \\ 0 & 80 & 100 & 0 \\ 0 & 0 & 50 & 140 \end{pmatrix}$$

Число заполненных клеток k=6. Это число должно равняться рангу системы ограничений r=m+n-1=3+4-1=6. Так как k=r=6, то построенный план является невырожденным. Подсчитаем затраты на перевозку по этому плану

Z=150.7+50.8+80.5+100.9+50.3+140.6=3740.

3. Построим первое опорное решение транспортной задачи методом минимальной стоимости (минимального тарифа).

150	130	150	140
7	8	1	2
*		150	50
4	5	9	8
150	*	*	30
9	2 130	*	60
	7	7 8	7 8 1
	*	* *	* * 150
	4	4 5	4 5 9
	150	150 *	150 * *
	9	9 2	9 2 3

Найдем клетку с минимальным тарифом. Это клетка (1,3) с тарифом

С13 = 1. Построение исходного опорного плана начинаем с занесения поставки груза в клетку с наименьшей стоимостью с13. Заполняем клетку х13 = 150. Оставшиеся клетки третьего столбца заполняем точками, так как потребности третьего получателя полностью удовлетворены. У первого поставщика осталось 50 единиц груза. Ищем следующую клетку с минимальным тарифом. Таких клеток две: c14 = 2, c32 = 2. Заполним сначала клетку (3,2). Поставим в нее x32=min (190, 130)=130. Второй столбец заполняем точками. У третьего поставщика осталось 60 единиц груза. Ищем следующую клетку с наименьшим тарифом – это клетка (1,4). В нее помещаем 50 единиц груза, min(50,140)=50. Первую строку заполняем точками, так как от первого поставщика вывезен весь груз. Четвертому получателю недопоставлено 90 единиц. Аналогичным образом распределяем весь имеющийся груз и получаем первый опорный план перевозок.

$$X_1 = \begin{pmatrix} 0 & 0 & 150 & 50 \\ 150 & 0 & 0 & 30 \\ 0 & 130 & 0 & 60 \end{pmatrix}$$

Подсчитаем затраты на перевозку по этому плану.

 $Z=150\cdot1+50\cdot2+150\cdot4+30\cdot8+130\cdot2+60\cdot6=1710$.

Итак, в каждой строке и в каждом столбце таблицы заполнена хотя бы одна клетка, циклов по заполненным клеткам нет, число заполненных клеток m+n-1=6, следовательно, план опорный и невырожденный.

4. Проверка первого опорного плана (решения) на оптимальность. Метод потенциалов

После построения исходного опорного плана приступаем к проверке его на оптимальность методом потенциалов, который заключается в последовательном улучшении опорных планов транспортной задачи на основе информации, полученной с помощью чисел, называемых потенциалы поставщиков α_i и потребителей β_j (α_i , β_j — двойственные переменные, то есть переменные задачи, двойственной к транспортной). Потенциалы находим из условия $\alpha_i + \beta_j = c_{ij}$, где c_{ij} — тарифы заполненных клеток. Будем проверять на оптимальность первый опорный план, построенный методом минимального тарифа. В двойственной задаче одна свободная переменная, поэтому возьмем одну любую из двойственных переменных и приравняем ее к нулю. Возьмем, например, β_4 =0 (выгоднее брать в качестве нулевой переменной ту, которая соответствует строке или столбцу с наибольшим количеством заполненных клеток).

В таблице в дополнительном столбце справа помещаем потенциалы отправителей α_i , а в строке снизу β_i — потенциалы получателей. Составим систему уравнений для определения потенциалов:

$$eta_4=0$$
 $lpha_1+eta_4=2$, $lpha_1=2$, $lpha_2+eta_4=8$, $lpha_2=8$, $lpha_3+eta_4=6$, $lpha_3=6$, $lpha_1+eta_3=1$, $lpha_3+eta_2=2$, $lpha_2+eta_1=4$, $lpha_2+eta_1=4$. Из этой системы находим

$$\begin{array}{c} \alpha_1 = 2, \\ \beta_4 = 0, & \alpha_2 = 8, \\ \beta_1 = -4, & \alpha_3 = 6, \\ \beta_2 = -4, & \beta_3 = -1/ \end{array}$$

b _j	150	130	150	140	α_{i}
200	* 7	*	1 150	50 50	$\alpha_1 = 2$
180	150	*	9 *	8 30	α ₂ =8
190	*	130	* 3	6 60	$\alpha_3=6$
β_{j}	$\beta_1 = -4$	$\beta_2 = -4$	$\beta_3 = -1$	$\beta_4 = 0$	

Считаем оценки для свободных клеток:

$$\Delta_{ij} = c_{ij} - (\alpha_i + \beta_j) = c_{ij} - \alpha_i - \beta_j$$
 $\Delta_{11} = 7 - (2 - 4) = 9$
 $\Delta_{22} = 5 - (8 - 4) = 1$
 $\Delta_{23} = 9 - (8 - 1) = 2$
 $\Delta_{31} = 9 - (6 - 4) = 7$
 $\Delta_{33} = 3 - (6 - 1) = -2$

Запишем получившиеся оценки в левом верхнем углу свободных клеток.

b _j	į.	150		130		150		140	α_{i}
200	9>0	*	7	10>0	8	150	1	50	$\alpha_1 = 2$
180	150		4	1>0	5	2>0	9	8 30	α ₂ =8
190	7>0 *		9	130	2	-2<0 *	3	60	α ₃ =6
β_{j}		$\beta_1 =$	-4	$\beta_2 = -$	-4	$\beta_3 =$	-1	$\beta_4 = 0$	

Так как среди оценок Δ_{ij} имеются отрицательные Δ_{33} =-2, то данный план не является оптимальным. Его можно улучшить перераспределением поставок. Для этого выбираем свободную клетку с наименьшим отрицательным значением Δ_{ij} (наибольшим по абсолютной величине). В данном случае это клетка (3,3).

b _j	150	130	150	140	α_{i}
200	* 7	*	150 λ	50+ ₹	$\alpha_1 = 2$
180	150	* 5	* 9	30 8	α ₂ =8
190	*	130	3 ∗+ λ	6 60 λ	α ₃ =6
β_{j}	$\beta_1 = -4$	$\beta_2 = -4$	$\beta_3 = -1$	$\beta_4 = 0$	

Сроим цикл пересчета, начиная с клетки (3,3), в которую нужно поместить поставку груза (её отмечают знаком «+»), и двигаясь по занятым клеткам (в данном случае это клетки (3,4), (1,4), (1,3)), поочередно отмечая их знаками «-», «+». Если в клетку (3,3) добавили + λ , то в смежных по циклу клетках необходимо вычесть λ для сохранения баланса перевозок по третьей строке и третьему столбцу. Звенья цикла должны быть параллельны строкам или столбцам таблицы, причем в каждой вершине цикла встречаются ровно два звена, одно из которых находится в строке, а другое — в столбце. Количество вершин в цикле должно быть четно. В результате построения цикла

в соответствующих строках и столбцах должно быть парное количество знаков «-», «+».

Определяем величину поставки λ в клетку (3,3), как минимальную величину из поставок, стоящих в отрицательных клетках, то есть $\lambda=\min\{60,150\}=60$. Перераспределяем по циклу поставки на величину λ . Значение λ записываем в незанятую клетку (3,3), отмеченную знаком «+», двигаясь по циклу, прибавляем эту величину к поставкам в клетках со знаком «+», вычитаем в клетках со знаком «-».

В результате получаем новое опорное решение или новый опорный план, в котором клетки с грузом, равным величине λ , становятся свободными.

b _j	150	130	150	140
200	7 *	8	1 90	2 110
180	4 150	5 *	9	8 30
190	9	2 130	3 60	6 *

Если освобождается больше одной клетки, то есть число заполненных клеток меньше числа m+n-1, то такой план называется вырожденными, и для определения потенциалов необходимо ввести недостающее количество нулевых элементов в число основных базисных переменных. Свободные клетки заполняют нулевыми поставками так, чтобы они не образовывали цикл по заполненным клеткам, и чтобы в каждой строке и в каждом столбце находилась хотя бы одна заполненная клетка. Проверим новый опорный план на оптимальность. Пусть α_1 =0. Тогда найдем все остальные потенциалы, рассматривая только заполненные клетки и помня, что для них α_i + β_j = c_{ij} , то есть что сумма потенциалов должна быть равна тарифу, стоящему на пересечении соответствующих потенциалам строки и столбца.

b _j	150	130	150	140	α_{i}
200	* 7	*	90	2 110	$\alpha_1 = 0$
180	150	* 5	9 *	30	α ₂ =6
190	*	130	60	· 6	$\alpha_3=2$
β_{j}	$\beta_1 = -2$	$\beta_2 = 0$	$\beta_3 = 1$	$\beta_4 = 2$	

Число заполненных клеток k=m+n-1, следовательно, план невырожденный. Найдем оценки $\Delta_{ij}=c_{ij}-(\alpha_i+\beta_j)=c_{ij}-\alpha_i-\beta_j$. Для всех клеток с точками, где стоят свободные переменные. Данный опорный план не является оптимальным, так как не все оценки для свободных клеток $\Delta_{ij}\geq 0$, а именно, $\Delta_{22}=-1<0$.

b _j	150	130	150	140	α_{i}
200	9>0	7 8>0 8	90	110	$\alpha_1 = 0$
180	150	4 -1<0 5	2>0 9	8 30	α ₂ =6
190	9>0 *	9 2	60	2>0 6	$\alpha_3=2$
β_{j}	$\beta_1 = -2$	$\beta_2 = 0$	$\beta_3 = 1$	$\beta_4 = 2$	

Возьмем клетку (2,2) за начало цикла пересчета. Цикл будет проходить по клеткам (2,2), (3,2), (3,3), (1,3), (1,4), (2,4) и опять вернется в (2,2).

b _j	150	130	150	140	α_{i}
200	9>0 7	8>0 8	90- A	2 110++λ	$\alpha_1 = 0$
180	150	-1<0 5	2>0 9	8 30-λ	α ₂ =6
190	9>0 9 *	130- A	60+ ³	2>0 6	$\alpha_3=2$
β_{j}	$\beta_1 = -2$	$\beta_2 = 0$	$\beta_3 = 1$	$\beta_4 = 2$	

Ищем количество единиц груза λ , перераспределяемых по циклу пересчета, как минимум по клеткам, помеченных знаком минус. $\lambda=\min(30, 90, 130)=30$. Получаем новый опорный план

b _j	150	130	150	140
200	* 7	* 8	60	140
180	150	30	* 9	*
190	*	100	90	6 *

Проверяем данный опорный план на оптимальность

b _j	150	***	130		150			140		α_{i}
200	8>0	7	8>0	8	60	1		140	2	$\alpha_1 = 0$
180	150	4	5 30		3>0	9	1>0	* 8		α ₂ =5
190	8>0	9	100	2	90	3	2>0	*	6	α ₃ =2
β_{j}	$\beta_1 =$	-1	β_2	= 0	β_3	=1		β_4 =	2	

Полученный опорный план является оптимальным, так как все оценки для свободных клеток $\Delta_{ij\geq}$ 0. Выписываем оптимальный план: x11=0; x12=0; x13=60; x14=140; x21=150; x22=30; x23=0; x24=0; x31=0; x32=100; x33=90; x34=0. Или в матричной форме

$$X_{\text{опт}} = \left(\begin{array}{cccc} 0 & 0 & 60 & 140 \\ 150 & 30 & 0 & 0 \\ 0 & 100 & 90 & 0 \end{array}\right)$$

Высчитываем минимальные затраты на транспортировку продукции: $Z_{\min}=1.60+2.40+4.150+5.30+2.100+3.90=1560$

2. Решения транспортной задачи с помощью программы Ms Excel

Для решения классической транспортной задачи с помощью программы Ms Excel необходимо задать конкретные значения параметрам исходной задачи. Для определения рассмотрим задачу оптимального планирования перевозок бензина некоторой марки между нефтеперерабатывающими заводами (НПЗ) и автозаправочными станциями (АЗС). В этом случае в качестве транспортируемого продукта рассматривается бензин, в качестве пунктов производства— 3 нефтеперерабатывающих завода (т=3), а в качестве пунктов потребления— 4 автозаправочные станции (п=4).

Объемы производства бензина следующие: НПЗ №1 – 10 т, НПЗ №2 – 14 т, НПЗ №3 – 17 т. Объемы потребления бензина следующие: АЗС №1 – 15 т, АЗС №2 – 12 т, АЗС №3 – 8,5 т, АЗС №4 – 5,5 т. Стоимость транспортировки одной тонны бензина между НПЗ и АЗС задана в форме следующей таблицы:

Между НПЗ и АЗС (в тысяч рублей)

Пункты потребления /	A3C №1	A3C №2	A3C №3	A3C №4
Пункты производства				
НПЗ №1	3	5	7	11
НПЗ №2	1	4	6	3
НПЗ №3	5	8	12	7

Соответствующая математическая постановка рассматриваемой индивидуальной транспортной задачи может быть записана в следующем виде: 3x11+5x12+7x13+11x14+x21+4x22+6x23+3x24+5x31+8x32+12x33+7x34—min, где множество допустимых альтернатив формируется следующей системой ограничений типа равенств:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 10; \\ x_{21} + x_{22} + x_{23} + x_{24} = 14; \\ x_{31} + x_{32} + x_{33} + x_{34} = 17; \\ x_{11} + x_{21} + x_{31} = 15; \\ x_{12} + x_{22} + x_{32} = 12; \\ x_{13} + x_{23} + x_{33} = 8,5; \\ x_{14} + x_{24} + x_{34} = 5,5; \\ x_{ij} \ge 0, \ \forall i \in (1,2,3), \ \forall j \in (1,2,3,4). \end{cases}$$

Транспортная задача является сбалансированной.

Для решения сформулированной индивидуальной транспортной задачи с помощью программы MS Excel создадим в книге Линейное программирование новый лист и изменим его имя на Транспортная задача. Для решения задачи выполним следующие подготовительные действия:

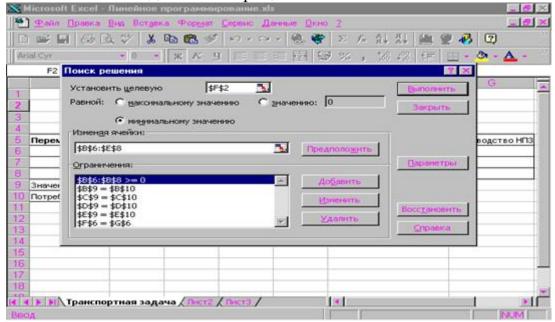
- 1.Внесем необходимые надписи в ячейки A5:A10, B1, F1. B5:G5, как это изображено на рис. 2.1. Следует отметить, что конкретное содержание этих надписей не оказывает никакого влияния на решения рассматриваемой транспортной задачи.
- 2. В ячейки B2:E4 введем значение коэффициентов целевой функции (табл. 2.1).
- 3. В ячейки F2, введем формулу: =суммпроизв (B2:E2; B6:E8), которая представляет целевую функцию (2.6).
- 4. В ячейки G6:G8 и B10:E10 введем значения, соответствующие правым частям ограничений (2.7).
- 5. В ячейку F6 введем формулу: =сумм (B6:E6), которая представляет первое ограничение (2.7).
 - 6. Скопируем формулу, введенную в ячейку F6, в ячейки F7 и F8.
- 7. В ячейку В9 введем формулу: =сумм (В6:В8), которая представляет четвертое ограничение (2.7).
 - 8. Скопируем формулу, введенную в ячейку В9, в ячейки С9, D9 и Е9.

Внешний вид рабочего листа MS Office Excel с исходными данными для решения транспортной задачи показан на рисунке.

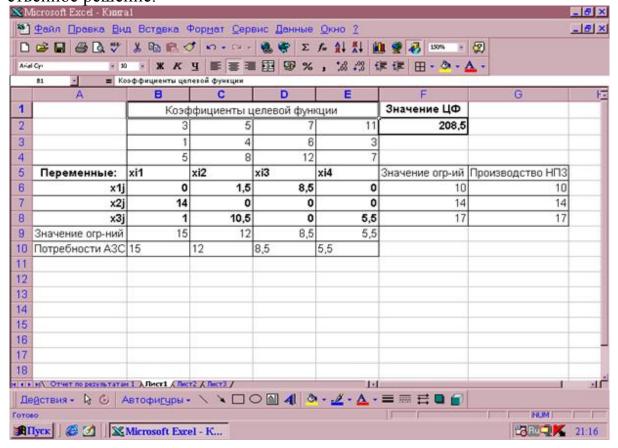
Для дальнейшего решения задачи следует вызвать мастер поиска решения, для чего необходимо выполнить операцию главного меню:

Сервис Поиск решения.

После появления диалогового окна Поиск решения следует выполнить следующие действия:


1.В поле с именем Установить целевую ячейку: ввести абсолютный адрес ячейки \$F\$2.

2.Для группы Равной: выбрать вариант поиска решения – минимальному значению.


6 x1j 0 = СУММ(В6:E6) 10 7 x2j 0 = СУММ(В7:E7) 14 8 x3j 0 = СУММ(В6:E8) 17 9 Значение огр-ний = СУММ(В6:E = СУММ(С6:C = СУММ(Б6:E = СУМM(Б6:E = СУMM(Б6:E = СУMM(8	Файл ∏равка						_16
F2 ■ = CYMMПРОИЗВ(В2:E4;C6)			1 7 %	100 m 🗸	10 - 54	· 🔒 👺	Σ € 負 ↔	<u>M</u> 2 ♣ ②
A B C D E F G 1 Коэффициенты целевой функции Значение ЦФ 2 3 5 7 11 =CУММПРОИЗВ(В2:Е4;С) 3 1 4 6 3 4 5 8 12 7 5 Переменные хі1 хі2 хі3 хі4 Значение огр-ний Производство НГ 6 хі1 0 =CУММ(В6:Е6) 10 7 хі1 =CУММ(В6:Е6) 10 3 хі3 =CУММ(В6:Е6) 17 3 значение огр-ний =CУММ(В6:Е = СУММ(С6:С = СУММ(С6:С = СУММ(Е6:Е 0 Потребности АЗС 15 12 8,5 5,5 1 2 3 4 4 5 6 3 1 -CУММ(В6:Е = СУММ(С6:С = СУММ(С6:С = СУММ(Е6:Е 2 3 3 3 4 4 5 6 6 7	Ari	al Cyr	8 8	x K	1 = =	B B	% , % 1%	課 Ⅲ - △ - ▲ -
Коэффициенты целевой функции Значение ЦФ		F2 💌	=	=СУММП	РОИЗВ(В2:	E4;C6)		-1/-
3 5 7 11		A	В	C	D	Е	E	G
1 4 6 3 5 8 12 7 5 Переменные xi1 xi2 xi3 xi4 Значение огр-вий Производство НГ 6 xij 0 = Сумм(В6:E6) 10 7 x2) 0 = Сумм(В7:E7) 14 3 x3 0 = Сумм(В6:E8) 17 9 Значение огр-ний = Сумм(В6:E = Сумм(С6:C = Сумм(С6:E = Сумм(Е6:E	1		Коэффицие	нты целевой	функции		Значение ЦФ	
5 8 12 7 Переменные xi1 xi2 xi3 xi4 Значение огр-ний Производство НГ xi1 0 = СУММ(В6:E6) 10 7 x2 0 = СУММ(В6:E6) 17 3 значение огр-ний = СУММ(В6:E = СУММ(С6:C = СУММ(С6:E = СУММ(Е6:E = СУММ(E6:E = СУММ(E6:E = СУМM(E6:E = СУМM(E6:E = СУMM(E6:E = СУMM(E6:E = СУMM(E6:E = СУMM(E6:E = СУMM(E6:E = СУMM(E6:E	2	3	3	5	7	11	-суммпроизв(в	2:E4;C
Переменные xi1 xi2 xi3 xi4 значение огр-ний Производство НГ 6 xi1 0 =CУMM(B6:E6) 10 7 x2j 0 =CУMM(B7:E7) 14 8 x3j 0 =CУMM(B6:E8) 17 9 Значение огр-ний =CУMM(B6:E = CУMM(C6:C = CУMM(D6:C = CУMM(E6:E 10 Потребности АЗС 15 12 8,5 5,5 13 4 4 4 4 4 16 17 17 17 17 17 18	3		1	4	6	3		
6 x1j 0 =CYMM(B6:E6) 10 7 x2j 0 =CYMM(B7:E7) 14 8 x3j 0 =CYMM(B6:E8) 17 9 Значение огр-ний =CYMM(B6:E =CYMM(C6:C =CYMM(D6:D =CYMM(E6:E =	4		5	8	12	7		
7	5	Переменные	xi1	xi2	xi3	xi4	Значение огр-ний	Производство НПЗ
8 x3 0 = СУММ(В6:E8) 17 9 Значение огр-ний = СУММ(В6:E = СУММ(С6:С = СУММ(С6:E = СУММ(Е6:E = СУМM(E6:E = СУMM(E6:E = CVMM(E6:E = CVMM(E6:	6	x1j	0				=CYMM(B6:E6)	10
9 Значение огр-ний =CУММ(В6:E =CУММ(С6:С =CУММ(D6:D =CУММ(Е6:E 10 Потребности АЗС 15 12 8,5 11 12 13 14 15 16	7					8		
ID Потребности АЗС 15 12 8,5 5,5 11 12 12 13 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	_							17
11	9			-				
14 15 16 17	10	Потребности АЗС	15	12	8,5	5,5		
14 15 16 17	Щ							
14 15 16 17	12							
15 16 17								
16 17								
17								
18								
MMI								
THE DINCT THETE THETE	CO.							

- 3. В поле с именем Изменяя ячейки: ввести абсолютный адрес диапазона ячеек \$B\$2:\$E\$4.
- 4. Добавить 7 ограничений, соответствующих базовым ограничениям исходной постановки решаемой транспортной задачи. С этой целью выполнить следующие действия:
- для задания первого ограничения в исходном диалоговом окне Поиск решения нажать кнопку с надписью Добавить;
 - в появившемся дополнительном окне выбрать ячейку \$F\$6, которая
 - должна отобразиться в поле с именем Ссылка на ячейку;
- в качестве знака ограничений из выпадающего списка выбрать строгое неравенство "=";
 - в качестве значения правой части ограничения выбрать ячейку \$C\$6;
- для добавления первого ограничения в дополнительном окне нажать кнопку с надписью Добавить;
 - аналогичным образом задать оставшиеся 6 ограничений.
- 5. Добавить последнее ограничение на неотрицательность значений переменных задачи. Внешний вид диалогового окна мастера поиска решения с ограничениями для транспортной задачи изображен на рисунке.

6.В дополнительном окне параметров поиска решения следует выбрать отметки Линейная модель и Неотрицательные значения.

После задания ограничений и целевой функции можно приступить к поиску численного решения, для чего следует нажать кнопку Выполнить. После выполнения расчетов программой MS Excel будет получено количественное решение.

Результатом решения транспортной задачи являются найденные оптимальные значения переменных: x11=0, x12=1,5, x13=8,5, x14=0, x21=14, x22=0, x23=0, x24=0, x31=1, x32=10,5, x33=0, x34=5,5, которым соответствует значение целевой функции: f opt = 208,5. При выполнении расчетов для ячеек B6:E8 был выбран числовой формат с тремя знаками после запятой.

Анализ найденного решения показывает, что для удовлетворения потребностей АЗС №1 следует транспортировать 14т бензина из НПЗ №2 и 1тиз НПЗ №3, для удовлетворения потребностей АЗС №2 следует транспортировать 1,5 т бензина из НПЗ №1 и 10,5т — из НПЗ №3, для удовлетворения потребностей АЗС №3 следует транспортировать 8,5 т бензина из НПЗ №1 и, наконец, для удовлетворения потребностей АЗС №4 следует транспортировать 5,5 т бензина из НПЗ №3. При этом общая стоимость найденного плана перевозок составит 208,5 тысяч рублей.

Варианты заданий для самостоятельного решения.

Решить транспортную задачу методом потенциалов и с помощью средств MS Excel.

Запасы груза равны соответственно: 110, 50, 180, 100 единиц, а потребности соответственно: 150, 130, 160 единиц. Матрицы стоимостей приведены в таблице. Необходимо найти такой план перевозок, при котором их стоимость будет минимальной.

$N_{\underline{0}}$	МАТРИЦА	$N_{\underline{0}}$	МАТРИЦА	No॒	МАТРИЦА
	ТАРИФОВ		ТАРИФОВ		ТАРИФОВ
1	7 1 1 8	2	3 6 5 9	3	8 5 5 7
	5 5 5 1		3 8 9 8		1 5 1 1
	2 7 5 4		5 6 3 1		6 2 5 6
4	1 4 3 8	5	8 4 8 8	6	7 2 8 8
	7 5 5 1		5 9 8 1		4 3 7 3
	5 7 2 3		2 6 6 4		4 3 7 7
7	2 7 9 2	8	8 9 7 8	9	5 1 5 1
	8 9 8 2		8 7 9 9		8 4 5 1
	2 3 2 8		7 8 4 6		9 2 4 7
10	6 4 5 1	11	1 4 7 3	12	6 5 6 2
	2 7 3 3		6 3 6 8		3 6 3 3
	7 5 8 9		1 4 3 5		1 5 2 7

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку транспортной задачи линейного программирования, интерпретацию переменных транспортной задачи, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Что такое задача о размещении?
- 2. Какова постановка стандартной ТЗ?
- 3. Запишите математическую модель ТЗ.
- 4. Перечислите исходные и искомые параметры модели Т3.
- 5. Какова суть каждого из этапов построения модели ТЗ?
- 6. Раскройте понятие сбалансированности ТЗ.
- 7. Что такое фиктивные и запрещающие тарифы?
- 8. В каком соотношении должны находиться величины фиктивных и запрещающих тарифов при необходимости их одновременного использования в транспортной модели?

Лабораторная работа 5 ЗАДАЧА О НАЗНАЧЕНИЯХ. РЕШЕНИЕ ЗАДАЧИ ВЕНГЕРСКИМ МЕТОДОМ

1. Цель работы

Использование методов линейного программирования для решения задач о назначении.

2. Учебные вопросы, подлежащие рассмотрению:

- Постановка задачи о назначении линейного программирования.
- Примеры задач, решаемых с помощью составления и расчета линейных математических моделей.
 - Метод Фогеля и венгерский метод решения задачи о назначении.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Формулировка задачи о назначении.
- Методы решения задачи о назначении.
- Нахождение оптимального плана задачи о назначении.

4. Порядок выполнения работы

Необходимо:

- Построить модель задачи, включая таблицу назначений.
- Найти оптимальное решение задачи.
- Оформить отчет по лабораторной работе.

Пример. Решить задачу об оптимальном назначении с матрицей эффективностей A .

$Q_j \backslash R_i$	R_1	R_2	R_3	R_4	R_5
Q_1	2	4	1	3	3
Q_2	1	5	4	1	2
Q_3	3	5	2	2	4
Q_4	1	4	3	1	4
Q_5	3	2	5	3	5

Решение. Поскольку не указано, будем решать задачу на минимум (стандартная постановка). Решение будем искать венгерским методом.

Составляем исходную таблицу (матрицу):

2	4	1	3	3
1	5	4	1	2
3	5	2	2	4
1	4	3	1	4
3	2	5	3	5

Этап 1. В каждой строке ищем минимальный элемент (выделяем жирным в таблице) и отнимаем от всех элементов строки. Получим:

2	4	1	3	3
1	5	4	1	2
3	5	2	2	4
1	4	3	1	4
3	2	5	3	5

1	3	0	2	2
0	4	3	0	1
1	3	0	0	2
0	3	2	0	3
1	0	3	1	3

Теперь проводим аналогичную процедуру для всех столбцов: ищем наименьший элемент по столбцу и отнимаем его из всех элементов столбца. Получим:

1	3	0	2	2	
0	4	3	0	1	
1	3	0	0	2	
0	3	2	0	3	
1	0	3	1	3	
1	3	0	2	1	
0	4	3	0	0	
1	3	0	0	1	

Задачей является распределение всех подлежащих назначению единиц в клетки с нулевой стоимостью.

Этап 2. Выбираем строку с одним нулем (строка №1), выделяем нуль жирным и зачеркиваем (выделено серым) оставшиеся нулевые значения этого столбца (столбца №3).

Выбираем строку с одним нулевым значением (строка №5), выделяем нуль.

Выбираем строку с одним нулем (строка №3), выделяем нуль жирным и зачеркиваем (выделено серым) оставшиеся нулевые значения этого столбца (столбца №4).

Выбираем строку с одним нулем (строка №4), выделяем нуль жирным и зачеркиваем (выделено серым) оставшиеся нулевые значения этого столбца (столбца №1).

Выбираем строку с одним нулевым значением (строка №2), выделяем нуль.

1	3	0	2	1
0	4	3	0	0
1	3	0	0	1
0	3	2	0	2
1	0	3	1	2

Получаем оптимальную матрицу назначений:

		1		
				1
			1	
1				
	1			

Минимальное значение целевой функции: 1+2+2+1+2=8.

Варианты заданий для самостоятельного решения.

Решить задачу о назначении венгерским методом и методом аппроксимации Фогеля.

мации Фогсли.		
1 13 9 7 14 7 8 11 9 8 13 7 12 9 7 13 15 8 13 9 10 13 7 15 8 12	2 9 13 10 7 14 10 9 10 11 13 9 12 14 7 10 13 9 11 10 7 13 9 11 10 14	3 9 11 10 8 10 13 8 5 10 7 11 13 8 11 10 10 9 5 10 7 8 6 11 9 13
4 14 16 11 11 15 13 8 12 15 13 11 8 15 14 11 15 12 8 14 11 15 9 14 10 15	5 4 9 7 10 6 11 8 12 9 5 6 9 13 5 9 7 4 6 11 6 13 8 6 4 7	6 15 13 11 13 9 13 14 12 15 9 13 6 8 14 8 13 6 13 9 11 15 8 6 13 9
7 14 10 12 15 9 12 14 15 12 14 7 10 12 14 9 7 8 15 14 12 7 13 15 10 14	8 14 16 10 2 15 4 16 5 17 6 18 15 10 3 17 2 18 14 4 6 5 16 14 17 10	9 10 8 5 9 13 7 9 13 10 5 8 6 10 11 9 12 5 13 9 6 10 13 10 12 9
10 15 8 15 16 14 11 13 15 10 8 14 16 10 12 14 13 15 9 16 15	11 4 6 11 8 12 5 7 9 4 11 5 12 8 4 6 10 5 8 6 4 10 5 12 6 8	12 9 2 4 7 5 3 2 10 8 3 8 6 7 5 9 4 2 6 9 4 2 5 8 9 7

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку задачи о назначении, интерпретацию переменных задачи о назначении, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. – Пенза: ПГУАС, 2015. – 137 с.

2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Какова постановка задачи о назначениях?
- 2. В чем отличие модели задачи о назначениях от модели ТЗ?
- 3. Каковы исходные и искомые параметры задачи о назначениях?
- 4. Запишите математическую модель задачи о назначениях.

Лабораторная работа 6 РЕШЕНИЕ ЗАДАЧИ О НАЗНАЧЕНИЯХ В EXCEL

1. Цель работы

Использование методов линейного программирования для решения задач о назначении.

2. Учебные вопросы, подлежащие рассмотрению:

- Постановка задачи о назначении линейного программирования.
- Примеры задач, решаемых с помощью составления и расчета линейных математических моделей.
 - Решение задачи о назначении в MS Excel.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

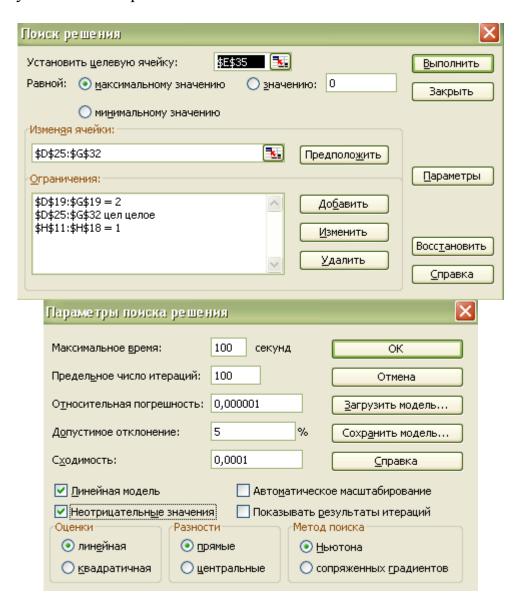
- Формулировка задачи о назначении.
- Методы решения задачи о назначении.
- Нахождение оптимального плана задачи о назначении.

4. Порядок выполнения работы

Необходимо:

- Найти оптимальное решение задачи с помощью средств MS Excel.
- Оформить отчет по лабораторной работе.

Пример


Туристическая компания организует экскурсионные автобусные туры по городам России. Компания получила 4 новых автобуса и предполагает направить их на маршруты во Францию, Италию, Чехию и Испанию. Каждый автобус обслуживают 2 водителя. Компанией приглашены 8 водителей, в различной степени знакомых с дорогами европейских стран (в % от экскурсионного маршрута):

	Франция	Италия	Чехия	Испания
Александр	56	43	85	68
Алексей	56	38	99	70
Валентин	63	94	54	84
Василий	96	89	65	24
Николай	44	62	63	72
Виктор	74	85	42	68
Андрей	23	59	37	92
Юрий	89	45	53	78

Необходимо распределить водителей так, чтобы общий показатель освоения маршрутов был максимальным Решение.

	Задача о	назначен	иях			
		Исходны	е данные			
	Франция	Италия	Чехия	Испания	сумма	значение
Александр	56	43	85	68	0	1
Алексей	56	38	99	70	0	1
Валентин	63	94	54	84	0	1
Василий	96	89	65	24	0	1
Николай	44	62	63	72	0	1
Виктор	74	85	42	68	0	1
Андрей	23	59	37	92	0	1
Юрий	89	45	53	78	0	1
сумма	0	0	0	0		
Значение	2	2	2	2		
		Резул	ьтаты			
	Франция	Италия	Чехия	Испания		
Александр	0	0	0	0		
Алексей	Ö	Õ	Õ	Ō		
Валентин	0	0	0	0		
Василий	0	0	0	0		
Николай	0	ō	0	0		
Виктор	0	0	ō	0		
Андрей	0	0	0	0		
Юрий	0	0	0	0		
Показатель	освоения	0				

Запускаем Поиск решения:

Результат расчетов:

	Задача о	назначен	иях			
		Исходны	е данные			
	Франция	Италия	Чехия	Испания	сумма	значение
Александр	56	43	85	68	1	1
Алексей	56	38	99	70	1	1
Валентин	63	94	54	84	1	1
Василий	96	89	65	24	1	1
Николай	44	62	63	72	1	1
Виктор	74	85	42	68	1	1
Андрей	23	59	37	92	1	1
Юрий	89	45	53	78	1	1
сумма	2	2	2	2		
Значение	2	2	2	2		
		Резул	ьтаты			
	Франция	Италия	Чехия	Испания		
Александр	0	0	1	0		
Алексей	ő	Õ	1	Õ		
Валентин	0	1	Ó	0		
Василий	1	0	0	0		
Николай	0	0	0	1		
Виктор	0	1	0	0		
Андрей	0	0	0	1		
Юрий	1	0	0	0		
	освоения	712	max			

Варианты заданий для самостоятельного решения.

Решить задачу о назначении с помощью Excel.

1	7 11 8 13	5 6 5 8	6 13 11 13	5 7 5 10	12 10 7		2	7 12 9 13	13 6 13 8	8 7	5 6 5 9	9 5 10 7	3	6 6 8	13 10 12 7		11 5 13	5 11 6 9
4	6	5	9	7	10	 	5	10		9	6	12	6	6	13		5	8
	5 8	8	12	13 13	11			5 17	4	2	16 10	14 15		7	9	5 8	3	10
	12	10	13	8	12			14	16	18	4	7		11	7	10	3	6
	5	11	6	10	7			5	3	10	18	15		8	4	9	7	11

7	15	13	8	15	11	8	11	7	10	8	12	9	14	10	9	6	11
	9	16	10	12	13		14	7	11	9	15		13	7	9	12	14
	8	9	15	10	13		11	7	11	15	10		6	8	9	12	14
	8	13	15	16	14		14	11	9	12	11		8	6	13	9	11
	11	14	12	9	15		15	10	7	8	10		10	12	6	9	7
10	3	3	10	7	4	11	12	7	13	11	9	12	2	9	3	7	5
	5	9	3	8	4		12	15	10	7	12		4	10	3	6	8
	6	3	10	4	5		14	11	15	12	9		5	11	3	7	2
	3	7	10	6	9		7	12	15	12	7		3	6	10	5	11
	5	3	7	9	11		10	13	15	11	7		3	6	3	5	3

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку задачи о назначении, интерпретацию переменных задачи о назначении, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/—Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.—56 с.— Режим доступа: http://www.iprbookshop.ru/29703.—ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Как записать модель задачи о назначениях, подразумевающую максимизацию ЦФ?
- 2. Каким образом в модели задачи о назначениях можно запретить конкретное назначение?
- 3. В чем особенности процесса приведения задачи о назначениях к сбалансированному виду?

Лабораторная работа 7 ЗАДАЧА О РАСПРЕДЕЛЕНИИ СРЕДСТВ МЕЖДУ ПРЕДПРИЯТИЯМИ

1. Цель работы

Изучение задачи распределения ресурсов методом динамического программирования. В задачах динамического программирования процесс принятия решения разбит на шаги, на каждом из которых принимается оптимальное решение, приводящее в максимум значение целевой функции.

2. Учебные вопросы, подлежащие рассмотрению:

- Постановка задачи о распределении ресурсов.
- Изучение алгоритма решения задачи и составление программы вычислений.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Формулировка задачи о распределении ресурсов.
- Методы решения задачи о распределении ресурсов.
- Нахождение оптимального решения задачи о распределении ресурсов.

4. Порядок выполнения работы

Необходимо:

- Найти оптимальное решение задачи о распределении ресурсов.
- Оформить отчет по лабораторной работе.

Пример

Между 4-мя предприятиями распределяется 60 миллионов рублей. Прирост выпуска продукции на каждом предприятии зависит от выделенной суммы средств X. Значения прироста задаются в виде таблицы $g_i(X),\ i=1,2,3,4$. Найти такой план распределения средств между предприятиями, при котором общий прирост выпуска продукции будет максимальным.

Средства Х,	Прирост выпуска продукции, млн руб.					
Средства X, млн руб.	$g_1(x)$	$g_2(x)$	$g_3(x)$	$g_4(x)$		
0	0	0	0	0		
20	7	6	14	14		
40	23	23	21	20		
60	31	30	34	35		

Решение:

Начальное состояние $S_0 = 60$. разобьем весь процесс выделения средств предприятиям на 4 шага.

На 1-м шаге выделяем X_1 1-му предприятию. После этого останется $S_1 = S_0 - X_1$.

На 2-м шаге выделяем X_2 2-му предприятию. После этого останется $S_2 = S_1 - X_2$.

На 3-м шаге выделяем X_3 3-му предприятию. После этого останется $S_3 = S_2 - X_3$.

На 4-м шаге выделяем Х₄ 4-му предприятию.

Уравнения Беллмана будут иметь вид:

$$Z_k(S_{k-1}) = \max_{X_k} \left\{ f_k(S_{k-1}, X_k) + Z_{k+1}(S_k) \right\} = \max_{0 \le X_k \le S_{k-1}} \left\{ g_k(X_k) + Z_{k+1}(S_{k-1} - X_k) \right\}.$$

На k-м шаге из оставшихся S_{k-1} средств надо выделить X_k средств k-му предприятию, чтобы прирост выпуска продукции на k-м и оставшихся предприятиях был максимальным.

Если k=4, тогда
$$Z_4(S_3) = \max_{0 \le X_4 \le S_3} g_4(X_4)$$
.

Заполним таблицу:

		<i>)</i> -				
$S_3 \setminus X_4$	0	20	40	60	$Z_4(S_3)$	X_4^*
0	0				0	0
20		14			14	20
40			20		20	40
60				35	35	60

В столбце S_3 и строке X_4 указаны все возможные значения. Все оставшиеся перед 4-м шагом средства нужно выделить 4-му предприятию. Поэтому числа из столбца $g_4(X)$ исходной таблицы записываем в нашу таблицу в столбцы со 2-го по 5-й. В столбцах со 2-й по 5-й определяем максимум в каждой строке, и результат пишем в 6-й столбец. Те X_4 , которым соответствуют числа 6-го столбца, пишем в 7-й столбец.

ответствуют числа 6-го столбца, пишем в 7-й столбец. Пусть k=3, тогда
$$Z_3(S_2)=\max_{0\le X_3\le S_{21}}\left\{g_3(X_3)+Z_4(S_2-X_3)\right\}.$$

Определим оптимальную стратегию при распределении средств между 3-м и 4-м предприятиями. Заполним новую таблицу:

$S_2 \setminus X_3$	0	20	40	60	$Z_3(S_2)$	X^*_3
0	0+0=0				0	0
20	0+14=14	14+0=14			14	0 или 20
40	0+20=20	14+14=28	21+0=21		28	20
60	0+35=35	14+20=34	21+14=35	34+0=34	35	0 или 40

В 1-м столбце указано, сколько средств осталось для 3-го и 4-го предприятий. В строке X_3 дана информация о том, сколько из этих оставшихся средств достанется 3-му предприятию. Заполняются столбцы со 2-го по 5-й.

В клетке (2;2) на долю 3-го и 4-го предприятия приходится $S_2=0$, из них на долю 3-го предприятия приходится $X_3=0$. поэтому нужно сложить

значения из исходной таблицы для $g_3(X), X=0$ (это 0) и из предпоследнего столбца предыдущей таблицы при $S_3=S_2-X_3=0-0=0$, то есть 0+0=0.

В клетке (3;2) на долю 3-го и 4-го предприятия приходится $S_2=20$, из них на долю 3-го предприятия приходится $X_3=0$. поэтому нужно сложить значения из исходной таблицы для $g_3(X), X=0$ (это 0) и из предпоследнего столбца предыдущей таблицы при $S_3=S_2-X_3=20-0=20$, (это 14) то есть 0+14=0. И т.д.

В столбцах со 2-й по 5-й определяем максимум в каждой строке, и результат пишем в 6-й столбец. Те X_3 , которым соответствуют числа 6-ого столбца, пишем в 7-й столбец.

Пусть k=2, тогда
$$Z_2(S_1) = \max_{0 \le X_2 \le S_1} \left\{ g_2(X_2) + Z_3(S_1 - X_2) \right\}.$$

Определим оптимальную стратегию при распределении средств между 2-м, 3-м и 4-м предприятиями. Заполним новую таблицу:

$S_1 \setminus X_2$	0	20	40	60	$Z_2(S_1)$	X_2^*
0	0+0=0				0	0
20	0+14=14	6+0=6			14	0
40	0+28=28	6+14=20	23+0=23		28	0
60	0+35=35	6+28=34	28+14=37	30+0=30	37	40

В 1-м столбце указано, сколько средств осталось для 2-го, 3-го и 4-го предприятий. В строке X_2 дана информация о том, сколько из этих оставшихся средств достанется 2-му предприятию. Поясним, как заполняются столбцы со 2-го по 5-й.

Например, в клетке (5;4) на долю 2-го 3-го и 4-го предприятия приходится $S_1=60$, из них на долю 2-го предприятия приходится $X_2=40$. поэтому нужно сложить значения из исходной таблицы для $g_2(X), X=40$ (это 23) и из предпоследнего столбца предыдущей таблицы при $S_2=S_1-X_2=60-40=20$, (это 14) то есть 23+14=37. И т.д.

В столбцах со 2-й по 5-й определяем максимум в каждой строке, и результат пишем в 6-й столбец. Те X_2 , которым соответствуют числа 6-ого столбца, пишем в 7-й столбец.

Пусть k=1, тогда
$$Z_1(S_0) = \max_{0 \le X_1 \le S_0} \left\{ g_1(X_1) + Z_2(S_0 - X_1) \right\}.$$

Определим оптимальную стратегию при распределении средств между предприятиями. Заполним новую таблицу:

$S_0 \setminus X_1$	0	20	40	60	$Z_1(S_0)$	X^*_1
0	0+0=0				0	0
20	0+14=14	7+0=7			14	0
40	0+28=28	7+14=21	23+0=23		28	0
60	0+37=37	7+28=35	28+14=37	31+0=31	37	о или 40

В 1-м столбце указано, сколько средств. В строке X_1 дана информация о том, сколько из этих оставшихся средств достанется 1-му предприятию. Поясним, как заполняются столбцы со 2-го по 5-й.

Например, в клетке (4;3) на долю предприятий приходится $S_0=40$, из них на долю 1-го предприятия приходится $X_1=20$. поэтому нужно сложить значения из исходной таблицы для $g_1(X), X=20$ (это 7) и из предпоследнего столбца предыдущей таблицы при $S_1=S_0-X_1=40-20=20$, (это 14) то есть 7+14=21. И т.д.

В столбцах со 2-й по 5-й определяем максимум в каждой строке, и результат пишем в 6-й столбец. Те X_1 , которым соответствуют числа 6-го столбца, пишем в 7-й столбец.

Максимальное значение $Z_0(S_0)=37, S_0=60, X_1^*=0$ или 40 . Если $X_1^*=0$, то $S_1=S_0-X_1^*=60-0=60$.

Из таблицы при k=2 и $S_1=60$ находим в последнем столбце $\boldsymbol{X}_2^*=40$, тогда $S_2=S_1-\boldsymbol{X}_2^*=60-40=20$.

Из таблицы при k=3 и $S_2=20$ находим в последнем столбце $X_3^*=0$ или 20. Если $X_3^*=0$ тогда $S_3=S_2-X_3^*=20-0=20$.

Из таблицы при k=4 и $S_3=20\,$ находим в последнем столбце $X_4^*=20\,.$

Получен оптимальный вариант распределения средств: $X_1^* = 0; X_2^* = 40; X_3^* = 0; X_4^* = 20$

Если $X_3^*=20$ тогда $S_3=S_2-X_3^*=20-20=0$. Из таблицы при k=4 и $S_3=0$ находим в последнем столбце $X_4^*=0$.

Получен еще один оптимальный план распределения средств: $X_1^*=0; X_2^*=40; X_3^*=20; X_4^*=0$.

Если $X_1^*=40$, то $S_1=S_0-X_1^*=60-40=20$. Из таблицы при k=2 и $S_1=20$ находим в последнем столбце $X_2^*=0$, тогда $S_2=S_1-X_2^*=20-0=20$. Действия при $S_2=20$ рассмотрены выше.

Получим еще два оптимальных варианта распределения средств:

$$X_1^* = 40; X_2^* = 0; X_3^* = 0; X_4^* = 20 \text{ M}$$

$$X_1^* = 40; X_2^* = 0; X_3^* = 20; X_4^* = 0$$

Для наглядности сведем оптимальные решения в таблицу:

X^*_1	X_2^*	X^*_3	X^*_4
0	40	0	20
0	40	20	0
40	0	0	20
40	0	20	0

Общий прирост выпуска продукции в каждом из вариантов равен 37 млн руб.

Варианты заданий для самостоятельного решения.

Решить задачу о распределении ресурсов.

Общая сумма в 4 млн руб. распределяются между тремя предприятиями в количествах, кратных 1 млн руб. В результате выделения средств k-му предприятию в размере u оно дает доход $J_k(u)$, k=1,2,3, величина которого может быть найдена из таблицы 1.

Используя метод динамического программирования, определить такой план распределения средств между предприятиями, при котором суммарный доход максимален.

Вариант 1

Tr ~	1
Гаолица	- 1
таолица	т,

1 00 0 0 1 1 1					
и	0	1	2	3	4
$J_1(u)$	0	5	9	11	12
$J_2(u)$	0	4	8	12	14
$J_3(u)$	0	7	9	10	11

Вариант 2

Таблица 1.

	_ '				
u	0	1	2	3	4
$J_1(u)$	0	6	10	12	13
$J_2(u)$	0	4	9	11	14
$J_3(u)$	0	7	10	11	12

Вариант 3

Таблица 1.

и	0	1	2	3	4
$J_1(u)$	0	7	9	11	12
$J_2(u)$	0	5	8	14	16
$J_3(u)$	0	8	9	10	11

Вариант 4

Таблица 1.

1 00 0 0 1 1 1					
и	0	1	2	3	4
$J_1(u)$	0	6	11	12	14
$J_2(u)$	0	4	9	13	16
$J_3(u)$	0	8	10	11	12

Вариант 5

Таблица 1.

и	0	1	2	3	4
$J_1(u)$	0	6	10	12	13
$J_2(u)$	0	4	8	12	14
$J_3(u)$	0	8	10	11	12

Вариант 6

Таблица 1.

и	0	1	2	3	4
$J_1(u)$	0	6	10	12	13
$J_2(u)$	0	4	8	12	14
$J_3(u)$	0	8	10	11	12

Вариант 7

Таблица 1.

и	0	1	2	3	4
$J_1(u)$	0	6	9	11	12
$J_2(u)$	0	4	8	12	14
$J_3(u)$	0	7	9	10	11

Вариант 8

Таблица 1.

и	0	1	2	3	4
$J_1(u)$	0	5	9	12	13
$J_2(u)$	0	4	9	11	14
$J_3(u)$	0	7	10	11	12

Вариант 9

Таблица 1

и	0	1	2	3	4	5
$J_1(u)$	0	5	9	12	13	15
$J_2(u)$	0	4	9	11	14	16
$J_3(u)$	0	7	10	11	12	13
$J_4(u)$	0	6	8	10	11	14

Вариант 10

Таблица 1

и	0	1	2	3	4	5
$J_1(u)$	0	5	9	11	12	14
$J_2(u)$	0	4	8	12	14	15
$J_3(u)$	0	7	9	10	11	12

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; постановку задачи о распределении ресурсов, алгоритм и программу расчетов, результаты ее решения, а также выводы по результатам решения.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/—Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.—56 с.— Режим доступа: http://www.iprbookshop.ru/29703.—ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. В чем заключается постановка задачи распределения ресурсов.
- 2. Поясните алгоритм решения задачи распределения ресурсов.
- 3. Перечислите методы решения задачи распределения ресурсов.
- 4. Поясните алгоритм решения задачи лабораторной работы.
- 5. Поясните принцип построения программы вычисления.

Лабораторная работа 8 РЕШЕНИЕ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

1. Цель работы

Исследование многокритериальных задач линейного и нелинейного программирования при различных компромиссных критериях

2. Учебные вопросы, подлежащие рассмотрению:

- Постановка задачи многокритериальной оптимизации.
- Изучение алгоритма решения задачи и составление программы вычислений.

3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Формулировка задачи многокритериальной оптимизации.
- Методы решения задачи многокритериальной оптимизации.
- Нахождение оптимального решения задачи многокритериальной оптимизации.

4. Порядок выполнения работы

Необходимо:

- Найти оптимальное решение задачи многокритериальной оптимизации.
 - Оформить отчет по лабораторной работе.

Во многих реальных задачах критериев, которые оптимизируются, может быть несколько. Например, при производстве продукции максимизируется качество и минимизируется себестоимость, при взятии ссуды в банке максимизируется кредитный срок и минимизируется процентная ставка, при выборе места для строительства дома отдыха максимизируются экологические условия и минимизируется расстояние от населенного пункта.

Существует несколько методов решения многокритериальных задач. Одним из наиболее эффективных является метод последовательных уступок, использование которого рассмотрим на примере.

Пример

Необходимо оценить кандидатов на некоторую должность с использованием трехбалльной системы $O_1 = O_2 = \{1,2,3\}$ по двум критериям: образование (C_1) и опыт работы (C_2) . Результаты оценивания пяти кандидатов представлены в таблице.

Tr ~	T)			
Габлина	PANTITI TOTI I	ΔΙΙΕΩΠΙΙΙΙΩ	COTURITOR	на должность
таолина —	т Сэультаты	Опспивания	кандидатов	па должность

V отгинать г	Крит	ерий
Кандидаты	Образование	Опыт
1	1	3
2	2	2
3	2	1
4	1	2
5	3	1

Оптимальными по Парето являются кандидаты с номерами 1, 2, 5. Кандидаты с номерами 4 и 3 являются доминируемыми.

Существует множество методов сужения множества Парето, но все они основаны на привлечении дополнительной качественной или количественной информации и критериях. Если в примере с оценкой кандидатов определить минимальный порог образования равный двум, то точка 1 исключается из множества Парето (рассматриваются только оставшиеся точки множества неулучшаемых решений 1, 2 и 5), которое теперь содержит только

две точки 2 и 5. Если предположить в дополнение к введенному ограничению, что опыт работы существенно важнее, чем образование, то точка 5 исключается из множества Парето, которое сужается до одной точки, или кандидата, с номером 2.

Из приведенного примера видно, что только привлечением дополнительной информации можно сузить множество Парето.

Сужение множества альтернатив до множества эффективных решений важно не только само по себе, но еще и потому, что на более узком подмножестве могут выполняться различного рода упрощающие дальнейший анализ допущения о предпочтениях, которые заведомо несправедливы для множества решений. Кроме того, эффективные решения могут обладать интересными и практически важными свойствами, не присущими остальным решениям.

Таким образом, решение многокритериальной задачи сводится к следующим основным составляющим:

- 1. Определению множества неулучшаемых решений Парето;
- 2. Получению дополнительной информации о критериях в том или ином виде;
- 3. Использованию дополнительной информации о критериях для сужения множества Парето до тех пор, пока это множество не будет содержать только одну альтернативу или группу альтернатив.

Вариант задания для самостоятельного решения.

Задание 1. Дано множество (альтернатив) системы «Ноутбук» и основные их (критерии) характеристики. Исследуемые альтернативы их характеристик представлены в таблице.

Таблица – Исследуемые альтернативы и их характеристики

№ п/п	Наименование критерия	Toshiba Sallite A660-10X		HP Pavilion dv-7-4120er
1	Количество ядер процессора	4	4	2
2	Гактовая частота, ГГц	1,6	1,6	1,6
3	Диагональ экрана, дюйм	16	17,3	17,3
	Объем оперативной памяти,			
4	Гб	4096	4096	4096
5	Ёмкость жесткого диска, Гб	640	640	500
6	Вес, кг	2,62	3,06	3,03
7	Количество активных пиксе-	1,3	1,3	1,3
/	лей камеры, Мпикс			
8	Стоимость, у.е.	1300	1350	1280

Проанализировать данные таблицы. Сделать вывод о паретовском множестве альтернатив.

Задание 2. Множество критериев для задач линейного программирования:

$$F_1(x) = 5 x_1 + 8 x_2,$$

 $F_2(x) = -20000x_1 - 9000000x_2,$
 $F_3(x) = x_1 - 2 x_2.$

Множество критериев для задач нелинейного программирования:

$$F_1(x) = (x_1 - 4)^2 + 100x_2^2,$$

$$F_2(x) = 100^1 + (x_2 - 3)^2.$$

$$F_3(x) = (x_1 - 10)^2 + (x_2 - 10)^2$$

Ограничения:

$$x_1 + 3x_2 < 12$$
, $2x_1 + 5x_2 < 30$, $3x_1 + 2x_2 < 22$, $x_1 - 3x_2 < 0$, $2x_1 + 5x_2 > 10$, $5x_1 + x_2 > 5$, $x > 0$.

Решить следующие многокритериальные задачи линейного и нелинейного программирования при заданной системе ограничений:

- 1. Критерии $F_1 ^ max$, $F_2 ^ <u>min</u>$.
- 2. Критерии $F_1 ^ max$, $F_3 ^ <u>min</u>$.
- 3. Критерии F_1 ^ max, F_2 ^ max .
- 4. Критерии F₁ ^ max, F₃ ^ max.
- 5. Критерии $F_2 ^ max$, $F_3 ^ min$.
- 6. Критерии F₂ ^ max, F₃ ^ max.
- 7. Критерии $F_2 ^ \min$, $F_3 ^ \min$.
- 8. Критерии $F_2 \wedge \underline{min}$, $F_3 \wedge max$.

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; результаты численных экспериментов; графическую иллюстрацию анализа; сравнительный анализ решения многокритериальных задач линейного программирования; Парето— оптимальное множество решений; выводы.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и системы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Примеры многокритериальных задач.
- 2. Решение многокритериальных задач, когда критерии измеряются в одной шкале.

- 3. Решение многокритериальных задач, когда критерии измеряются в различных шкалах.
 - 4. Определение Парето оптимального множества решений.

Лабораторная работа 9 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЁННОСТИ

1. Цель работы

Исследование задач принятия решений в условиях неопределённости

- 2. Учебные вопросы, подлежащие рассмотрению:
- Основные типы неопределенности в задачах принятия решений
- Принятие решений в условиях риска
- Принятие решений в условиях неопределённости
- Принятие решений в конфликтных ситуациях
- 3. Методические рекомендации по подготовке к занятию.

Перед выполнением задания необходимо изучить теоретические вопросы:

- Принятия решений в детерминированных задачах
- Формулировка задачи принятия решений в условиях неопределённости
- Нахождение оптимального решения задачи принятия решений в условиях неопределённости.

4. Порядок выполнения работы

Необходимо:

- Найти оптимальное решение задачи принятия решений в условиях неопределённости.
 - Оформить отчет по лабораторной работе.

Пример. Необходимо определить оптимальный вариант решения. Матрица решений, вероятности выбора вариантов и вероятности обстановки приведены в табл. 8.1, γ =0.5, c=0.5. Дополнительные столбцы данной таблицы соответствуют промежуточным данным (значениям e_{ir}) ММ, ВL, НW и HL критериев. Жирной линией обведены клетки с максимальными значениями, определяющими оптимальный вариант.

Таблица 8.1

	F_1	F_2	F_3	F_4	F_5	p_i	MM	BL	HW	HL
E_1	16	12	-7	14	-8	0,3	-8	1	4	-3,5
E_2	11	10	8	15	21	0,1	8	11,9	14,5	9,95
E_3	6	-9	6	13	-13	0,4	-13	0,1	0	-6,5
E_4	2	6	-5	-3	4	0,2	-5	0,1	0,5	-2,5
q_j	0,1	0,2	0,4	0,1	0,2		E_2	E_2	E_2	E_2

Для определения оптимального варианта по ММ — критерию определяем минимальные значения в каждой строке (e_{ir}) и записываем их в столбец ММ. Затем находим среди них максимальное значение. Оптимальное решение — E_2

Для определения оптимального варианта по BL – критерию вычисляем значения:

```
e_{1r} = 16 \cdot 0, 1+12 \cdot 0, 2+(-7) \cdot 0, 4+14 \cdot 0, 1+(-8) \cdot 0, 2=1,

e_{2r} = 11 \cdot 0, 1+10 \cdot 0, 2+8 \cdot 0, 4+15 \cdot 0, 1+21 \cdot 0, 2=11, 9,

e_{3r} = 6 \cdot 0, 1+(-9) \cdot 0, 2+6 \cdot 0, 4+13 \cdot 0, 1+(-13) \cdot 0, 2=0, 1,

e_{4r} = 2 \cdot 0, 1+6 \cdot 0, 2+(-5) \cdot 0, 4+(-3) \cdot 0, 1+4 \cdot 0, 2=0, 1.
```

Далее записываем их в столбец BL и находим максимальное значение. Оптимальное решение – E_2 .

Для определения оптимального варианта по HW — критерию значения e_{ir} вычисляются как сумма произведения весового множителя c на максимальный элемент в строке и произведения (1-c) на минимальный элемент в строке (значение в столбце MM). Например, $e_{1r} = 0.5 \cdot 16 + (1-0.5) \cdot (-8) = 4$. Значения записаны в столбце HW. Находим среди них максимальное. Оптимальное решение — E_2 .

Для определения оптимального варианта по HL — критерию значения e_{ir} вычисляются как сумма произведения весового множителя γ на соответствующее значение в столбце BL и произведения $(1-\gamma)$ на минимальный элемент в строке (значение в столбце MM). Например, $e_{1r} = 0.5 \cdot 1 + (1-0.5) \cdot (-8) = -3.5$. Значения записаны в столбце HL. Находим среди них максимальное. Оптимальное решение — E_2 .

Для определения оптимального варианта по критерию Севиджа строим так называемую матрицу риска. Для этого находим максимальный элемент в столбце и отнимаем от него остальные элементы. Далее выбираем максимальные элементы по строкам и записываем их в столбец S. Определяем среди этих значений минимальное. Оптимальное решение — E_2

	F_1	F_2	F_3	F_4	F_5	S
E_1	0	0	15	1	29	28
E_2	5	2	0	0	0	5
E_3	10	21	2	2	34	34
E_4	14	6	13	18	17	18

Для определения оптимального варианта по расширенному минимаксному критерию вычисляем вспомогательную матрицу, элементы которой равны произведению элемента матрицы решений на соответствующие вероятности выбора варианта и возникновения той или иной обстановки. Далее применяем минимаксный критерий.

	F	F	F	F	F	P
	1	2	3	4	5	MM
E_1	0,48	0,72	-0,8	0,42	-0,5	-0,8
E_2	0,11	0,2	0,32	0,15	0,42	0,11
E_3	0,24	-0,7	0,96	0,52	-1	-1
E_4	0,04	0,24	-0,4	-0,1	0,16	-0,4

Оптимальное решение — E_{2} .

Вариант задания для самостоятельного решения.

Необходимо определить оптимальный вариант решения. Матрица решений, вероятности выбора вариантов и вероятности обстановки приведены в табл. 8.2, γ =0.5, c=0.5.

Таблица 8.2

		3.0	3.6	3.0	3.6
No	Матрица	\mathcal{N}_{Ω}	Матрица	\mathcal{N}_{0}	Матрица
	решений		решений		решений
1	0 0 22 5 7	4	23 9 9 12 -1	7	21 6 24 6 11
	17 8 4 9 11		22 19 4 23 12		18 0 2 13 0
	2 12 -1 21 -1		3 23 10 5 20		14 12 7 0 4
	7 23 9 20 8		15 2 16 24 14		10 25 2 -2 23
2	18 21 18 7 4	5	8 11 5 4 17	8	20 25 2 25 14
	8 12 6 21 7		25 16 17 14 -2		14 19 8 -2 -2
	12 3 22 7 20		19 3 6 22 18		9 22 20 20 7
	25 12 23 21 0		11 25 4 -1 4		11 17 2 6 -1
3	3 3 13 0 15	6	0 9 10 9 -2	9	2 23 9 25 13
	0 20 16 20 18		11 13 11 17 21		4 23 3 18 13
	14 5 17 15 24		14 6 9 15 22		10 7 9 23 14
	16 25 6 17 7		15 6 18 14 22		22 0 22 9 11

5. Содержание отчета

Отчет должен содержать: титульный лист; цель работы; задание; результаты численных экспериментов; графическую иллюстрацию анализа; сравнительный анализ решения многокритериальных задач линейного программирования; Парето— оптимальное множество решений; выводы.

6. Список литературы

- 1) Глебова Т.А., Строганов Д.В., Чиркина М.А, Юранов В.С. Теория принятия решений: учебное пособие, гриф УМО по университетскому политехническому образованию. Пенза: ПГУАС, 2015. 137 с.
- 2) Системы принятия решений [Электронный ресурс]: учебно-методический комплекс по специальности 080801 «Прикладная информатика (в информационной сфере)», специализации «Информационные сети и си-

стемы», квалификация «информатик-аналитик»/— Электрон. текстовые данные.— Кемерово: Кемеровский государственный университет культуры и искусств, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/29703.— ЭБС «IPRbooks», по паролю

7. Контрольные вопросы

- 1. Описать основные типы неопределённостей.
- 2. Дать определение понятию риск.
- 3. Сформулировать задачу принятия решений в условиях неопределённости.
- 4. Описать процедуру принятия решения на основании критерия Лапласа.
 - 5. Описать процедуру принятия решения на основании критерия Вальда.
 - 6. Описать процедуру принятия решения на основании критерия Гурвица.
 - 7. Описать процедуру принятия решения на основании критерия Сэвиджа.
- 8. Почему оптимальные решения, соответствующие различным критериям не совпадают?
- 9. Описать, как можно уменьшить потери от решения, принимаемого в условиях неопределённости.
 - 10. Сформулировать задачу принятия решений в условиях риска.
 - 11. Что такое риск?
 - 12. Что может служить показателем риска?

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	3
Лабораторная работа 1 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ	5
Лабораторная работа 2 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. СИМПЛЕКС-МЕТОД РЕШЕНИЯ ЗЛП	8
Лабораторная работа 3 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. РЕШЕНИЕ ЗЛП С ПОМОЩЬЮ СРЕДСТВ MS EXCEL. ДВОЙСТВЕННЫЕ ЗЛП	11
Лабораторная работа 4 РЕШЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ МЕТОДОМ ПОТЕНЦИАЛОВ	16
Лабораторная работа 5 ЗАДАЧА О НАЗНАЧЕНИЯХ. РЕШЕНИЕ ЗАДАЧИ ВЕНГЕРСКИМ МЕТОДОМ	28
Лабораторная работа 6 РЕШЕНИЕ ЗАДАЧИ О НАЗНАЧЕНИЯХ В EXCEL	32
Лабораторная работа 7 ЗАДАЧА О РАСПРЕДЕЛЕНИИ СРЕДСТВ МЕЖДУ ПРЕДПРИЯТИЯМИ	37
Лабораторная работа 8 РЕШЕНИЕ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ	43
Лабораторная работа 9 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЁННОСТИ	47

Учебное издание

Глебова Татьяна Александровна Чиркина Марина Александровна Пышкина Ирина Сергеевна

ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Учебно-методическое пособие к выполнению лабораторных работ по направлению подготовки 09.03.02 «Информационные системы и технологии»

В авторской редакции Верстка Н.В. Кучина

Подписано в печать 16.11.16. Формат 60x84/16.

Бумага офисная «Снегурочка». Печать на ризографе.

Усл.печ.л. 3,02. Уч.-изд.л. 3,25. Тираж 80 экз.

Заказ № 713.

Издательство ПГУАС. 440028, г. Пенза, ул. Германа Титова, 28.