МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Пензенский государственный университет архитектуры и строительства» (ПГУАС)

Н.А. Очкина

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Учебно-методическое пособие для практических занятий по направлению подготовки 38.03.03 «Управление персоналом»

Под общей ред. доктора технических наук, профессора Г.И. Грейсуха

УДК 531.521+537.100+535.100 ББК 22.62+22.313+22.314 О-95

Рекомендовано Редсоветом университета Рецензенты: кандидат технических наук, доцент С.В. Тертычная (ПГУ); кандидат физико-математических наук, доцент П.П. Мельниченко (ПГУАС)

Очкина Н.А.

Концепции современного естествознания: учеб.-метод. пособие O-95 для практических занятий по направлению подготовки 38.03.03 «Управление персоналом» / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. – Пенза: ПГУАС, 2016. – 120 с.

Разработано в соответствии с Государственным образовательным стандартом третьего поколения и предназначено для аудиторной работы студентов по дисциплине «Концепции современного естествознания». Включает вопросы для обсуждения на семинарских занятиях, задачи, решение которых позволит более глубоко усвоить фундаментальные законы природы, примеры выполнения тестов и тесты для проверки качества знаний студентов.

Подготовлено на кафедре «Физика и химия» и предназначено для использования студентами, обучающимися по направлению 38.03.03 «Управление персоналом», при изучении дисциплины «Концепции современного естествознания».

[©] Пензенский государственный университет архитектуры и строительства, 2016

[©] Очкина Н.А., 2016

ПРЕДИСЛОВИЕ

Настоящее учебное пособие разработано в соответствии с программой курса «Концепции современного естествознания» ФГОС ВО третьего поколения для направления 38.03.03 «Управление персоналом» и предназначено для практических занятий по курсу.

Целью практически занятий является ознакомление студентов с элементами современной естественнонаучной картины мира; изучение важнейших положений современных концепций физики, химии, космологии; овладение основными положениями современных научных концепций биологии и наук о человеке; развитие мышления, основанного на единстве гуманитарной и естественнонаучной культур.

В процессе подготовки и участия в практических занятиях по дисциплине студенты формируют такие общекультурные и профессиональные компетенции как:

- способность использовать основы философских знаний для формирования мировоззренческой позиции;
- способность анализировать основные этапы и закономерности исторического развития общества для формирования гражданской позиции;
 - способность к самоорганизации и самообразованию.
- В результате освоения тематики практических занятий по дисциплине студент должен демонстрировать следующие результаты обучения:
- **знать** достижения естественных наук в современном подходе к эволюционным процессам в биосфере и обществе;
- **уметь** использовать знания естественных наук в профессиональной деятельности при решении практических задач;
- **владеть** навыками использования в профессиональной деятельности базовых знаний в области естествознания.

Учебное пособие включает вопросы для обсуждения на семинарских занятиях, задачи, решение которых позволяет более глубоко усвоить фундаментальные законы природы, тесты для контроля качества знаний студентов.

ВВЕДЕНИЕ

Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке.

Картина мира, описываемая современным естествознанием проста и доступна для понимания. Эти качества ей придают принципы построения и организации современного научного знания: системность, глобальный эволюционизм, самоорганизация, историчность. Системность означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных систем, состоящая из огромного множества элементов разного уровня сложности и упорядоченности. Системный способ объединения элементов выражает их принципиальное единство. Глобальный эволюционизм — это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Самоорганизация — наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции.

Эти принципиальные особенности современной естественнонаучной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.

Однако у нее есть и еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а, следовательно, принципиальной незавершенности настоящей научной картины мира. Развитие общества, изменение его ценностных ориентаций, осознание важности исследования уникальных природных систем, в которые составной частью включен и сам человек, меняет и стратегию научного поиска, и отношение человека к миру.

Практическое занятие №1

Наука как отрасль духовной культуры. Отличие науки от других отраслей культуры. Уровни научного познания. Методы научного познания. Свойства научного знания. Формула науки. Основные формы научного знания

1. Семинар

Вопросы для обсуждения:

- 1) Наука, как отрасль духовной культуры:
- специфические черты науки;
- отличие науки от других отраслей культуры;
- классификация наук;
- уровни научного познания.
- 2) Научный метод:
- классификация методов научного познания:
- всеобщие методы;
- общенаучные методы:
- эмпирические методы;
- теоретические методы;
- методы конкретных наук.
- 3) Формы научного знания.
- 4) Псевдонаука.
- критерии научности;
- принципы научного познания.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина, Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.
- 5. Лавриненко, В.Н. Концепции современного естествознания [Текст] / В.Н. Лавриненко, В.П. Ратников. М.: ЮНИТИ-ДАНА, 2012. 319 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.

Семинарское занятие проводится деловой игры.

Алгоритм работы:

- 1) Каждый студент группы готовит доклад, тему которого определяет преподаватель. Для оперативной работы на семинаре он в письменном виде формулирует 20–30 вопросов по теме доклада. Студент должен четко представлять себе ответы и для оперативной работы на семинаре быть готовым быстро и содержательно ответить на любой вопрос по теме.
- 2) В начале семинарского занятия преподаватель назначает докладчика и группу «Эксперты» (до 2 человек). Задачей экспертов является формулировка уточняющих вопросов к докладчику; фиксирование и оценка доклада; фиксирование и оценка каждого заданного вопроса и данного ответа на него; в случае затруднений с ответом докладчика на какой-либо вопрос представители группы «Эксперты» обязаны ответить на него.
- 3) Преподаватель оценивает качество и объективность работы каждого студента из группы «Эксперты». В результате каждый студент в группе получает итоговую индивидуальную оценку (на основе оценок, выставленных каждому студенту группой «Эксперты» и преподавателем).

Требования к докладу: доклад должен быть по теме занятия; студент должен рассказывать, а не зачитывать доклад, соблюдая временной регламент. Возможна сопровождающая доклад презентация в PowerPoint.

Требования к вопросам экспертов: вопросы должны быть содержательными (требующими развернутого ответа) и формулироваться так, чтобы на них можно было ответить на основании предложенных к теме материалов.

Фиксирование и оценка доклада, каждого вопроса и каждого ответа должны осуществляться каждым представителем группы «Эксперты» самостоятельно в письменном виде на бланке, содержащем фамилии всех членов группы. Все оценки выставляются в баллах — в соответствии с критериями, обозначенными в таблице.

ллов

Оценка по четырех- уровневой шкале	Количество баллов за деловую игру	Критерии оценки
<u>l</u>	2	3
Отлично	32-40 (от 8 до 10 баллов за каждую из четырех тем)	Выставляется студентам, которые: обнаруживают всестороннее, систематическое и глубокое знание материала; исчерпывающе владеют понятийным аппаратом; демонстрируют развитую способность к анализу и сопоставлению различных подходов к решению рассматриваемой проблемы; способны при необходимости сформулировать оригинальные вопросы, которые не допускают односложного ответа, сами развернуто (но без искусственного затягивания) отвечают на вопросы, демонстрируя практическое владение материалом. Количество выставляемых баллов в указанном диапазоне изменяется пропорционально % или количеству верных ответов.

1	2	3
Хорошо	24-28 (от 6 до	Выставляется студентам, которые: обнаруживают твёр-
	7 баллов за	дое знание материала, но допускают отдельные погреш-
	каждую из	ности; твердо владеют понятийным аппаратом, допуская
	четырех тем)	лишь несущественные ошибки; не всегда могут проана-
		лизировать и сопоставить различные подходы к реше-
		нию рассматриваемой проблемы; задают оригинальные
		вопросы, которые не допускают односложного ответа,
		сами развернуто (но без искусственного затягивания)
		отвечают на вопросы, демонстрируя владение материа-
		лом, но допуская отдельные погрешности.
Удовлетвори-	16-20 (от 4 до	Выставляется студентам, которые: в основном знают ма-
тельно	5 баллов за	териал, но допускают существенные погрешности; в ос-
	каждую из	новном владеют понятийным аппаратом, но допускают
	четырех тем)	существенные ошибки; испытывают существенные
		трудности при анализе и сопоставлении различных под-
		ходов к решению рассматриваемой проблемы; не всегда
		способны задать оригинальные вопросы, которые не до-
		пускают односложного ответа, сами с трудом отвечают
		на вопросы, допускают существенные погрешности при
		ответах, искусственно затягивают ответ.
Неудовлетво-	0-15 (от 0 до 3	Выставляется студентам, которые: обнаруживают зна-
рительно	баллов за ка-	чительные пробелы в знаниях материала; не владеют
	ждую из че-	понятийным аппаратом; не способны проанализиро-
	тырех тем)	вать и сопоставить различные подходы к решению
		рассматриваемой проблемы; способны задать лишь
		повторяющиеся вопросы, которые зачастую допускают
		односложные ответы, допускают принципиальные
		ошибки в ответе на вопросы.

Бланк должен быть подписан фамилией эксперта и сдан преподавателю в конце занятия. Итоговая индивидуальная оценка выводится преподавателем и доводится до каждого студента в конце семинара или на следующем занятии.

2. Практические задания (тесты)

2.1. Примеры выполнения тестов

Пример 1.

Установите соответствие между методом научного познания и примером его использования:

- 1) эксперимент
- 2) абстрагирование
- 3) дедукция

- а) проведение колебательной реакции Белоусова Жаботинского в тонком слое привело к образованию спиральных волн на поверхности слоя;
- б) рассмотрение планет в виде материальных точек при описании их движения в Солнечной системе;
- в) вывод о падении тел в поле тяготения Солнца на основе закона всемирного тяготения;
- г) первый закон термодинамики является обобщением эмпирического опыта человечества.

Решение:

Примером эксперимента является проведение колебательной реакции Белоусова — Жаботинского в тонком слое, что привело к образованию спиральных волн на поверхности и явилось примером пространственной самоорганизации в системе. Метод абстрагирования используется, когда, описывая движение планет, их рассматривают как материальные точки. Вывод о падении тел в поле тяготения Солнца на основе закона всемирного тяготения получен методом дедукции.

Пример 2.

Установите соответствие между формой научного знания и её примером:

- гипотеза;
- 2) научный факт;
- 3) закон.
- а) одно из объяснений взрывного многообразия флоры и фауны в истории Земли изменением содержания кислорода в земной атмосфере;
- б) многочисленные палеонтологические данные о составе флоры и фауны в конкретный геологический период;
- в) функционирование живых организмов за счет потребления энергии Солнца и продуктов питания;
- г) положения современной биологии об элементарных структуре, наследственном материале и факторах эволюции.

Решение:

Одно из объяснений взрывного многообразия флоры и фауны в истории Земли изменением содержания кислорода в земной атмосфере — это гипотеза. Многочисленные палеонтологические данные о составе флоры и фауны в конкретный геологический период — это пример научного факта. Функционирование живых организмов за счет потребления энергии Солнца и продуктов питания связано с всеобщим законом природы — законом сохранения энергии при ее превращениях.

2.2. Тесты для практической работы

1. Важнейшая функция науки, дающая возможность сформировать целостную систему представлений об общих свойствах и закономерностях, существующих в природе, называется ...

Варианты ответов. Количество правильных ответов – 1

- 1) прогностической;
- 2) систематизирующей;
- 3) мировоззренческой;
- 4) объяснительной.
- 2. Установите соответствие между функцией науки и ее содержанием:
- 1) отнесение описанного по классам и разделам;
- 2) внесение полученных знаний в существующую картину мира, позволяющее сформировать научную картину мира.
 - а) мировоззренческая;
 - б) систематизирующая.
 - 3. Установите соответствие между функцией науки и ее содержанием:
- 1) возможность применения полученных знаний в производстве, для регуляции общественной жизни, в социальном управлении;
 - 2) предсказание новых открытий в рамках существующих теорий.
 - а) прогностическая;
 - б) производственно-практическая.
- **4.** По предметному своеобразию все научные дисциплины делятся на группы: естественные, общественные, технические. Естествознание это...

Варианты ответов. Количество правильных ответов – 1

- 1) система знаний о бытии человека, социума, государства;
- 2) наука о наиболее общих свойствах материи и формах ее движения;
- 3) совокупность наук о Природе, взятая как единое целое;
- 4) учение о живой природе.
- **5.** Систему естественных наук можно представить в виде иерархической лестницы, каждая ступень которой является фундаментом для следующей науки, основывающейся на данных предшествующей. Укажите правильную последовательность:

Варианты ответов. Количество правильных ответов – 1

1) химия, биология, физика;

- 2) физика, химия, биология;
- 3) физика, биология, химия;
- 4) биология, химия, физика.

6. Естественные науки характеризуются:

Варианты ответов. Количество правильных ответов – 1

- 1) совпадением объекта и субъекта познания;
- 2) преобладанием качественных оценок;
- 3) затрудненностью экспериментальных методов исследования;
- 4) упором на строго объективную количественную оценку изучаемых объектов.

7. Основой всех естественных наук является:

Варианты ответов. Количество правильных ответов – 1

- физика;
- 2) астрономия;
- 3) биология;
- 4) химия.
- **8.** Φ изика это наука, изучающая ...

Варианты ответов. Количество правильных ответов – 1

- 1) физические свойства и процессы, происходящие в геосферах;
- 2) закономерности механического движения и причины, вызывающие или изменяющие движение;
- 3) строение и свойства вещества исходя из молекулярно-кинетических представлений;
- 4) наиболее простые и вместе с тем наиболее общие формы движения материи и их взаимные превращения.
 - **9.** Химия это наука о ...

Варианты ответов. Количество правильных ответов – 1

- 1) количественном и качественном составе вещества;
- 2) природных химических соединениях, их составе, свойствах, особенностях строения и условиях образования;
- 3) распределении химических элементов в различных геосферах, закономерностях их поведения и превращений;
 - 4) химических элементах и соединениях, их свойствах, превращениях.
- 10. Одним из разделов химии является органическая химия. Органическая химия ...

Варианты ответов. Количество правильных ответов – 1

1) изучает химические элементы и их соединения;

- 2) исследует строение, состав и свойства только биологических полимеров;
 - 3) изучает соединения углерода;
 - 4) это наука о качественном и количественном составе веществ.

11. *Биология* – это наука о ...

Варианты ответов. Количество правильных ответов – 1

- 1) биологической природе человека;
- 2) клетке, ее строении, функциях, химическом составе, индивидуальном и историческом развитии;
 - 3) живой природе, о закономерностях органического мира;
- 4) отношениях растительных и животных организмов между собой и с окружающей средой.
- **12.** Разделами биологии является анатомия, физиология, эмбриология. Эти науки ...

Варианты ответов. Количество правильных ответов – 1

- 1) исследуют проблемы наследственности и изменчивости;
- 2) изучают типы организмов и их взаимоотношения;
- 3) изучают строение, функции и развитие организма;
- 4) исследуют живую клетку.

13. Геология – это ...

Варианты ответов. Количество правильных ответов – 1

- 1) комплекс наук о химическом составе Земли, закономерностях распространения химических элементов в различных геосферах, законах их поведения, сочетания и миграций;
 - 2) наука, изучающая поверхность Земли с ее природными условиями;
- 3) комплекс наук о составе, строении, истории развития земной коры и Земли:
 - 4) наука о размещении в земной коре полезных ископаемых.
- **14. На** стыке двух фундаментальных естественных наук биологии и химии возникла биохимия. Биохимия это наука ...

- 1) о химическом составе Земли;
- 2) о химическом составе и химических реакциях живых организмов;
- 3) о биологической природе человека;
- 4) изучающая соединения углерода.

15. На стыке двух фундаментальных естественных наук физики и геологии возникла геофизика. Это наука:

Варианты ответов. Количество правильных ответов – 1

- 1) о горных породах, их составе, закономерностях распространения и происхождения;
- 2) о внутреннем строении, физических свойствах и процессах, происходящих в геосферах;
- 3) о химическом составе Земли, ее составе, структуре, особенностях формирования и развития;
 - 4) изучающая природные комплексы и их компоненты.

16. Примером интеграции наук является ...

Варианты ответов. Количество правильных ответов – 1

- 1) биофизика;
- 2) физика элементарных частиц;
- 3) физика плазмы;
- 4) физика твердого тела.

17. Примером дифференциации науки является...

Варианты ответов. Количество правильных ответов – 1

- 1) биофизика;
- 2) геофизика;
- 3) физика плазмы;
- 4) астрофизика.
- **18.** Установите соответствие между научным открытием и его автором:
 - 1) теория относительности;
 - 2) законы генетики;
 - 3) периодическая система химических элементов.
 - а) Эйнштейн;
- б) Менделеев;
- в) Мендель.

19. Прикладные науки ...

- 1) занимаются решением внутренних проблем самой науки;
- 2) изучают объективные закономерности природы, не имея в виду практического применения полученных знаний;
- 3) занимаются решением проблем, которые ставятся перед учеными обществом;
 - 4) ориентированы на получение новых знаний об окружающем мире.

20. Выберите неверное утверждение, которое касается общественных наук:

Варианты ответов. Количество правильных ответов – 1

- 1) цель общественных наук эффективное использование знаний законов природы в производственной или иной деятельности человека;
 - 2) включают в себя социально-научную и гуманитарную систему знаний;
 - 3) изучают все проявления социальной деятельности людей;
- 4) задача общественных наук объяснить законы общественной жизни, чтобы научиться ею управлять.
 - 21. Характерной чертой науки не является:

Варианты ответов. Количество правильных ответов – 1

- 1) систематичность;
- 2) завершенность;
- 3) фрагментарность;
- 4) универсальность.
- 22. Этапы развития научного познания:

Варианты ответов. Количество правильных ответов – 1

- 1) наблюдение гипотеза, теория, закон природы;
- 2) формализация, идеализация, аналогия, моделирование;
- 3) мифологическое созерцание, религиозное мировоззрение, научное мировоззрение.
 - 23. На эмпирическом уровне научного познания происходит...

- 1) сбор фактов и информации;
- 2) объяснение и обобщение фактов;
- 3) выдвижение гипотез;
- 4) предсказание новых явлений в рамках старых теорий.
- 24. Установите соответствие между определением метода научного познания и самим методом:
- 1) метод замещения изучаемого объекта подобным ему по ряду интересующих исследователя свойств и характеристик;
- 2) отвлечение от ряда несущественных для данного исследования свойств изучаемого явления с одновременным выделением интересующих свойств и отношений;
 - 3) соединение ранее выделенных частей предмета в единое целое.
 - а) синтез;

- б) абстрагирование;
- в) моделирование.
- **25.** Установите соответствие между определением метода научного познания и самим методом:
- 1) преднамеренное и целенаправленное изучение объектов, опирающееся на чувственные способности человека;
- 2) способ активного, целенаправленного исследования объектов в контролируемых и управляемых условиях;
 - 3) способ рассуждения или метод движения знания от общего к частному.
 - а) наблюдение;
 - б) эксперимент;
 - в) дедукция.
- **26.** Метод познания, который сводится к расчленению целого предмета на составляющие части с целью их всестороннего изучения, называется...

- 1) формализация;
- 2) дедукция;
- 3) анализ;
- 4) синтез.
- **27.** Установите соответствие между методом научного познания и примером его использования: 1) эксперимент; 2) абстрагирование; 3) дедукиия.
- а) рассмотрение планет в виде материальных точек при описании их движения в Солнечной системе;
- б) вывод о падении тел в поле тяготения Солнца на основе закона всемирного тяготения;
- в) проведение колебательной реакции Белоусова—Жаботинского в тонком слое привело к образованию спиральных волн на поверхности;
- г) первый закон термодинамики является обобщением эмпирического опыта человечества.
- **28.** Установите соответствие между свойством научного знания и его сутью: 1) точность; 2) системность; 3) объективность.
- а) знание максимально должно быть приближено к объективной реальности;
- б) в структуре знания прослеживается внутреннее единство и взаимосвязь всех составляющих частей;
 - в) знание не зависит от индивидуальных особенностей ученого;

- г) научное знание должно быть обязательно доказано, например многократным экспериментом.
- **29.** Сопоставьте форму научного знания и ее пример: 1) гипотеза; 2) закон; 3) теория.
 - а) существование фундаментальных частиц вещества кварков;
 - б) сохранение энергии в процессах превращения элементарных частиц;
 - в) кварковая модель строения атомного ядра;
- г) существование большого числа атомных ядер с характерным зарядом ядра.
- **30.** Установите соответствие между принципом научного познания и его сутью: 1) принцип верификации; 2) принцип фальсификации; 3) принцип соответствия.
- а) для получения статуса научной сама теория и все ее положения должны пройти многократную проверку экспериментом;
- б) любая научная теория и любое положение обязательно должны выдержать критику и опровержение со стороны как автора, так и оппонентов;
- в) квантовая и классическая механика дают одинаковые результаты при описании объектов, для которых можно не учитывать корпускулярноволновой дуализм и соотношения неопределенностей;
- г) для полного описания поведения микрообъекта необходимо знать как его корпускулярные, так и волновые характеристики, которые могут быть получены только в разных экспериментах.
 - 31. Укажите суждение которое является верным:

Варианты ответов. Количество правильных ответов – 1

- 1) все фундаментальные законы абсолютно точно отражают действительность;
- 2) любой закон относителен, он только в той или иной степени приближается к отображению объективной закономерности;
- 3) статистические законы являются следствием ограниченности наших способностей к познанию;
 - 4) динамические законы универсальны и единственны.
 - **32.** *Теория* это:

- 1) предположительное знание, которое носит вероятностный характер;
- 2) истинное, доказанное, подтвержденное знание о сущности явлений;
- 3) утверждение, раскрывающее общие связи изучаемых явлений.

33. Недостоверное знание, истинность которого еще не установлена, называют...

Варианты ответов. Количество правильных ответов – 1

- 1) концепцией;
- методом;
- 3) гипотезой;
- 4) абстракцией.

34. Под достоверностью научного знания понимается...

Варианты ответов. Количество правильных ответов – 1

- 1) независимость научного знания от познающего субъекта;
- 2) преемственность, в том смысле, что новые знания определённым образом и по определённым правилам соотносятся со старыми знаниями;
- 3) однозначность языка, четко фиксирующего смысл и значение понятий;
- 4) специфический способ обоснования истинности знания: экспериментальный контроль и выводимость одних знаний из других, истинность которых доказана.

35. Отличительным признаком псевдонауки является:

Варианты ответов. Количество правильных ответов – 1

- 1) полное соответствие наблюдаемым фактам;
- 2) системный характер;
- 3) фрагментарность, отсутствие системности;
- 4) восприимчивость к критике.

36. Сциентизм – это идеология, в основании которой лежит:

Варианты ответов. Количество правильных ответов – 1

- 1) недоверие к науке;
- 2) отрицание науки;
- 3) вера в науку;
- 4) восхваление науки.
- 37. Выберите верный принцип этики научных исследований:

- 1) интересы науки и общества всегда совпадают, любое знание благо;
- 2) ученый не несет ответственности за достоверность приводимых данных;
- 3) ученый не свободен в выборе предмета исследования, он выполняет социальный заказ;
- 4) в науке является нормой критика как уже принятых, так и новых идей.

38. Принцип системности научного знания отражает:

- 1) необходимость систематизации научного знания;
- 2) принципиальное единство материального мира, в котором каждый элемент связан со всеми другими;
 - 3) системную организацию Вселенной и каждой её подсистемы;
- 4) необходимость систематического получения знаний о предмете, явлении.

Практическое занятие №2

Развитие представлений о материи, движении. Механическая картина мира

1. Семинар

Вопросы для обсуждения:

- 1) Понятие материи. Виды материи:
- вещество;
- поле;
- физический вакуум:
- корпускулярная и континуальная концепции;
- уровни организации материи;
- взаимосвязь структурных уровней организации материи.
- 2) Движение:
- диалектическая и метафизическая концепции;
- основные формы движения.
- 3) Механистическая картина мира:
- история формирования механической картины мира;
- механическое движение как простейшая форма движения материи;
- фундаментальные законы Ньютона;
- масса как мера инертности и гравитации.;
- принцип эквивалентности;
- инвариантность и сохранение массы;
- скорость, импульс и кинетическая энергия для медленных движений;
- детерминизм Лапласа;
- движение планет и законы Кеплера;
- закон всемирного тяготения;
- принцип дальнодействия.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина, Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.

- 5. Лавриненко, В.Н. Концепции современного естествознания. [Текст] / В.Н. Лавриненко, В.П. Ратников. М.: ЮНИТИ-ДАНА, 2012. 319 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.
- 7. Лешкевич Т.Г. Концепции современного естествознания: Социогуманитарная интерпретация специфики современной науки: учебное пособие / Т.Г. Лешкевич. НИЦ Инфра-М, 2013. 335 с.

2. Практические задания (задачи, тесты)

2.1. Методические указания для решения задач по физической картине мира

- 1. Укажите основные законы и формулы, на которых базируется решение задачи, дайте словесную формулировку этих законов, разъясните буквенные обозначения, употребляемые при написании формул. Если при решении задачи применяется формула, полученная для частного случая, не выражающая какой-либо физический закон или не являющаяся определением какой-нибудь физической величины, то ее следует вывести.
- **2.** Аккуратно, при помощи чертежных принадлежностей выполните чертеж, поясняющий содержание задачи (в тех случаях, когда это возможно).
 - 3. Сопровождайте решение краткими, но исчерпывающими пояснениями.
- **4.** Выразите все величины, входящие в условие задачи, в единицах системы СИ.
- 5. Физические задачи весьма разнообразны и дать единый алгоритм их решения невозможно. Однако, как правило, физические задачи следует решать в общем виде, т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условиях задачи и взятых из таблиц. При этом способе не производятся вычисления промежуточных величин; числовые значения подставляются только в окончательную (рабочую) формулу, выражающую искомую величину. Рабочая формула должна быть записана в рационализированной форме, все величины, входящие в нее, выражены в единицах СИ. Несоблюдение этого правила приводит к неверному результату.
- **6.** Проверьте, дает ли рабочая формула правильную размерность искомой величины. Для этого в нее следует подставить размерность всех величин и произвести необходимые действия. Если полученная таким путем размерность не совпадает с размерностью искомой величины, то задача решена неверно.
- 7. Произведите вычисление значения искомой величины, руководствуясь правилами приближенных вычислений, запишите в ответе числовое

значение и сокращенное наименование или размерность единицы измерения искомой величины.

2.2. Примеры решения задач

Пример 1. Движение двух тел описывается уравнениями $x_1 = 0.75t^3 + 2.25t^2 + t$, $x_2 = 0.25t^3 + 3t^2 + 1.5t$ Определить величины скоростей этих тел и момент времени, когда ускорения их будут одинаковы, а также значение ускорения в этот момент времени.

Дано:

$$x_1 = 0.75t^3 + 2.25t^2 + t$$

 $x_2 = 0.25t^3 + 3t^2 + 1.5t$
 $v_1 = ?, v_2 = ?, t = ?,$
 $a = ?$

Решение

Определим момент времени, когда ускорения обоих тел одинаковы. Для этого получим выражения для ускорений, продифференцировав по времени уравнения движений тел:

$$a_1 = \frac{dv_1}{dt} = \frac{d^2x_1}{dt^2} = 4,5+4,5t,$$

$$a_2 = \frac{dv_2}{dt} = \frac{d^2x_2}{dt^2} = 6+1,5t.$$

Согласно условию задачи, в некоторый момент времени t ускорения тел одинаковы

$$a_1 = a_2$$
.

Поэтому

$$4,5+4,5t=6+1,5t. (1)$$

Решая уравнение (1) относительно t получаем

$$t = 0.5$$
 c.

Значения скоростей тел в этот момент времени:

$$v_1 = \frac{dx_1}{dt} = 2,25t^2 + 4,5t + 1,$$

 $v_1 = 2,25 \cdot 0,5^2 + 4,5 \cdot 0,5 + 1 = 3,81 \,\text{m/c}.$

$$v_2 = \frac{dx_2}{dt} = 0,75t^2 + 6t + 1,5$$

$$v_2 = 0,75 \cdot 0,5^2 + 6 \cdot 0,5 + 1,5 = 4,69 \,\text{m/c}.$$

Ускорения тел в этот момент времени:

$$a_1 = a_2 = a = 6 + 1,5t = 6,75 \,\mathrm{m/c}^2.$$

Otbet: $v_1 = 3.81 \,\text{m/c}$; $v_2 = 4.69 \,\text{m/c}$; $t = 0.5 \,\text{c}$; $a = 6.75 \,\text{m/c}^2$.

Пример 2. Частица массой 0,5 кг движется прямолинейно из состояния покоя под действием силы $F = F_m \sin \pi t$ ($F_m = 2 H$). Определите путь, который пройдет частица к концу второй секунды после начала движения.

Дано
$$m=0,5$$
 кг По второму закону Ньютона: $t_1=2$ с $F=F_m\sin\pi t$ $F_m=2$ Н $\upsilon_0=0$ $d\upsilon=\frac{F}{m}dt=\frac{F_m}{m}\sin\pi tdt$, $s=0$ $t=0$ $t=$

Учитывая, что $v_0 = 0$, получаем

$$\upsilon = \frac{F_m}{m\pi} (1 - \cos \pi t).$$

$$\upsilon = \frac{dS}{dt} \implies dS = \upsilon dt,$$

тогда

$$\int_0^S dS = \int_0^{t_1} \upsilon dt \Rightarrow$$

$$\Rightarrow S = \int_0^{t_1} \frac{F_m}{m\pi} (1 - \cos \pi t) dt = \frac{F_m}{m\pi} \left(\int_0^{t_1} dt + \int_0^{t_1} \cos \pi t dt \right) =$$

$$= \frac{F_m}{m\pi} \left(t \Big|_0^{t_1} - \frac{\sin \pi t}{\pi} \Big|_0^{t_1} \right) \Rightarrow S = \frac{F_m}{m\pi} \left(t_1 - \frac{\sin \pi t_1}{\pi} \right).$$

$$S = \frac{2 \text{ H}}{0.5 \text{ KG} \cdot 3.14} \left(2 \text{ c} - \frac{\sin 2\pi}{\pi} \right) = 2.55 \text{ m}.$$

Ответ: S = 2,55 м.

2.3. Задачи для решения на практическом занятии

1. Материальная точка движется по прямолинейной траектории. Уравнение ее движения имеет вид $S = t^4 + 2t^2 + 5$. Определите мгновенную скорость и ускорение точки в конце второй секунды от начала движения, а также путь, пройденный точкой за это время.

- **2.** Зависимость пройденного телом пути от времени задается уравнением $S = A + Bt + Ct^2 + Dt^3$ ($C = 0.1 \,\mathrm{m/c^2}$; $D = 0.03 \,\mathrm{m/c^3}$). Определите через какое время после начала движения ускорение тела будет равно 2 $\,\mathrm{m/c^2}$.
- **3.** Задано уравнение движения частицы вдоль оси $X: x = 4t 0.05t^2$, м. Определите: 1) время движения t частицы до полной остановки; 2) координату x и ускорение a частицы в этот момент времени.
- **4.** Ускорение частицы, движущейся прямолинейно, в зависимости от времени меняется согласно закону, выраженному уравнением $a(t) = 0.3t^2$, м/с². Найдите скорость υ частицы и пройденный ею путь S в течение 3 с при условии, что в момент времени t=0 скорость частицы равнялась нулю.
- **5.** Кинематические уравнения движения двух материальных точек имеют вид $x_1 = A_1 + B_1 t + C_1 t^2$ и $x_2 = A_2 + B_2 t + C_2 t^2$, где $B_1 = B_2$, $C_1 = -2$ м/с², $C_2 = 1$ м/с². Определите: 1) момент времени, когда скорости этих точек будут равны; 2) ускорения точек в этот момент времени.
- **6.** Тело массой 100 кг движется вдоль прямой под действием силы, изменяющейся с течением времени по закону F = bt, где b = 10 H/c. Определите время, за которое скорость тела увеличится с 5 м/с до 25 м/с.
- 7. На тело массой m=2 кг действует сила, пропорциональная времени F=kt, где k=3 кг·м/с³. Найдите путь S, пройденный телом за время t=4 с при условии, что в момент времени $t_0=0$ тело имело начальную скорость $\upsilon_0=2$ м/с.
- **8.** Найти закон движения тела массой 1 кг под действием постоянной силы 10 H, если в начальный момент времени тело покоилось в начале координат.
- **9.** Движение тела задано уравнением $S = 6t^3 + 3t + 2$. Определите массу тела, если в конце второй секунды на него действует сила 72 H.
- **10.** Под действием некоторой силы тело массой $m=3\,\mathrm{kr}$ совершает прямолинейное движение, описываемое уравнением $x=2t^3-3t^2+5t+4$. Чему равна действующая на тело сила в момент времени $t=5\,\mathrm{c}$?

2.4. Примеры выполнения тестов

Пример 1.

Тема: Развитие представлений о материи.

Обязательным свойством (атрибутом) материального объекта является возможность ...

- 1) проведения над ним наблюдений или экспериментов;
- 2) математического описания его свойств и структуры;
- 3) наглядно представить его форму и структуру;

4) интуитивно постичь его сущность и предназначение.

Решение:

По определению, материя (в любой ее форме) — это то, что существует независимо от нас и поддается эмпирическому познанию. Формами эмпирического познания выступают наблюдения (прямые или косвенные) и эксперимент. Математическое описание свойств материального объекта может более или менее длительное время отсутствовать — например, до сих пор нет математической модели человеческого мозга, хотя в его материальности сомневаться не приходится. Для многих материальных объектов (особенно относящихся к микромиру) наглядное представление вообще невозможно, поскольку наглядные образы формируются лишь на основе нашего опыта взаимодействия с объектами макромира. Аналогично, вопросы о сущности и предназначении для многих материальных объектов в рамках научного подхода лишены смысла (например, «для чего существуют звезды?»

Пример 2.

Тема: Развитие представлений о движении.

Нельзя описать как механическое перемещение или результат механического перемещения каких-то тел или частиц:

Варианты ответов. Количество правильных ответов – 1

- 1) дифракцию света на углу здания;
- 2) разгон протонов в ускорителе элементарных частиц;
- 3) распространение звука по рельсу;
- 4) разрушение здания при землетрясении.

Решение:

Механическое описание процессов как перемещения каких-то тел или частиц невозможно или неверно, например, в случаях, когда:

- 1) речь идет о качественных превращениях. Например, изучение геологической эволюции планеты требует рассматривать не только механическое перемещение вещества в ее недрах и на поверхности, но и происходящие при этом химические реакции, изменение физического состояния вещества (плавление или кристаллизация), ядерные реакции и т.д.;
- 2) рассматриваются колебания электромагнитного или иных физических полей в условиях, благоприятствующих проявлению волновой стороны этих колебаний. Например, радужная пленка на поверхности лужи, в которую попало масло из автомобиля, объясняется интерференцией света (электромагнитной волны, проявляющей в данном случае именно волновую сторону своей природы), отражающегося от верхней и нижней поверхности масляной пленки;
- 3) рассматривается движение микрочастиц в условиях, требующих учитывать законы квантовой механики. Например, движение протона в яд-

ре ограничено микроскопической областью с размерами порядка его длины волны (де Бройля). В этих условиях протон ведет себя уже не как частица, а как волна, и представление о траектории его движения неверно в принципе.

2.5. Тесты для практической работы

1. Впервые идея о единстве материальной основе окружающего мира была выдвинута:

Варианты ответов. Количество правильных ответов – 1

- 1) древнегреческими философами Милетской школы;
- 2) древнегреческими философами Элейской школы;
- 3) древнеиндийскими мудрецами;
- 4) древнекитайскими мудрецами.

2. *Порядок и уровни организации материи имеют структуру:* Варианты ответов. Количество правильных ответов – 1

- 1) линейную;
- 2) циклическую;
- 3) иерархическую;
- 4) круговую.

3. Расположите представления о материи в порядке их возникновения:

Варианты ответов. Количество правильных ответов – 1

- 1) все вещества состоят из четырех стихий;
- 2) существуют две формы материи с общими и противоположными свойствами;
- 3) между материей в форме гравитационного поля и геометрическими свойствами пространства времени невозможно провести четкую грань.
 - 4. Вещество это одна из форм ...

Варианты ответов. Количество правильных ответов – 1

- 1) энергии;
- 2) материи;
- 3) поля;
- 4) движения.
- **5.** Выберите верные утверждения:

- 1) вещество может двигаться с любой скоростью;
- 2) иногда вещество может двигаться со скоростью, большей, чем скорость света;

- 3) вещество никогда и нигде не может двигаться со скоростью, большей, чем скорость света в вакууме;
- 4) в принципе, вещество можно разогнать до скорости, равной скорости света в вакууме.
- **6.** Пространство, в котором отсутствуют реальные частицы, и выполняется условие минимума плотности энергии в данном объеме, называется....
 - 7. Понятие «движения» в естествознание означает:

Варианты ответов. Количество правильных ответов – 1

- 1) только процесс химических реакций;
- 2) изменение состояние тел, способ существования материи;
- 3) только процесс перемещения тел в пространстве;
- 4) только процесс деления клеток (митоз).
- **8.** Расположите представления о движении в порядке их возникновения:

Варианты ответов. Количество правильных ответов – 1

- 1) кроме механического, существуют и другие, более сложные формы движения, например, химическая форма движения материи;
- 2) источник насильственного движения тел это внешняя причина, некая сила;
 - 3) движение любых материальных тел регулируется законами механики.
- **9.** Смысл высказывания Γ ераклита «Все течет» заключается в том, что...

Варианты ответов. Количество правильных ответов – 1

- 1) невозможно создать вакуум из-за утечек воздуха сквозь щели и трещины;
 - 2) основой всего сущего является вода;
 - 3) любая вещь безостановочно изменяется;
 - 4) эволюция необратимый процесс, она не имеет заднего хода.
- **10.** В какой концепции понимания движения считается, что движение есть способ существования материи:

- 1) концепция метафизического субстанциализма;
- 2) диалектическая концепция;
- 3) концепция идеалистического релятивизма.

11. При зажигании спички формы движения материи сменяют друг друга в следующей последовательности:

Варианты ответов. Количество правильных ответов – 1

- 1) механическая ⇒ тепловая ⇒ химическая;
- 2) механическая ⇒ химическая ⇒ тепловая;
- 3) химическая ⇒ тепловая ⇒ механическая;
- 4) тепловая ⇒ химическая ⇒ механическая.
- **12.** Что нужно поставить вместо многоточия в предложении: «Система отсчета, в которой тело, неподверженное действию других тел,....., называется инерциальной».

Варианты ответов. Количество правильных ответов – 1

- 1) движется с постоянным ускорением по отношению к другим системам отсчета;
 - 2) движется прямолинейно по отношению к другим системам отсчета;
 - 3) движется равномерно по отношению к другим системам отсчета;
- 4) находится в состоянии покоя или равномерного прямолинейного движения.

13. Принцип относительности Галилея утверждает:

Варианты ответов. Количество правильных ответов – 1

- 1) все инерциальные системы отсчета по своим механическим свойствам эквивалентны друг другу;
- 2) во всех инерциальных системах отсчета все законы механики записываются одинаковым образом;
- 3) во всех инерциальных системах отсчета свойства пространства и времени одинаковы;
 - 4) все приведенные утверждения эквивалентны друг другу.
- **14.** Согласно механизму дальнодействия любой вид взаимодействия передается:

Варианты ответов. Количество правильных ответов – 1

- 1) между любыми структурами с конечной скоростью;
- 2) мгновенно только между соседними структурами;
- 3) между соседними структурами с конечной скоростью;
- 4) мгновенно через пустоту на любые расстояния.

15. Лапласова формулировка механического детерминизма гласит:

Варианты ответов. Количество правильных ответов – 1

1) существуют такие системы отсчета, в которых тело, не подверженное воздействию со стороны других тел, движется прямо и равномерно;

- 2) тяготение на самом деле существует, действует согласно изложенным нами законам и вполне достаточно для объяснения движения всех небесных тел и моря;
- 3) материя во всей Вселенной одна и та же, все воспринимаемые нами свойства её исчерпываются способностью дробиться и двигаться. Движение, смотря по различию производимых им действий, то теплотой, то светом;
- 4) ум, которому известны для какого-либо момента все силы природы и относительное расположение её частей, обнял бы в одной формуле движение всех тел Вселенной, будущее, как и прошедшее, предстало бы перед его взором.
- **16.** Осознав этическую неприемлемость концепции детерминированного механического движения атомов, античный философ Эпикур написал:

Варианты ответов. Количество правильных ответов – 1

- 1) смерть не имеет к нам никакого отношения, так как, когда мы существуем, смерть еще не существует, а когда смерть присутствует, тогда мы не существуем;
- 2) также и времени нет самого по себе, но предметы сами ведут к ощущенью того, что в веках совершилось;
- 3) истинно только все то, что мы наблюдаем чувствами или воспринимаем умом посредством постижения;
- 4) лучше следовать мифу о богах, чем быть рабом физиков; миф дает надежду умилостивить богов посредством почитания их, а судьба заключает в себе неумолимую необходимость.
 - 17. В механической картине мира принято, что ...

Варианты ответов. Количество правильных ответов – 2

- 1) свойства пространства разные в зависимости от направления;
- 2) пространство однородное, искривленное, неэвклидово;
- 3) пространство однородное, трехмерное, эвклидово;
- 4) в зависимости от выбора системы отсчет и темп протекания времени может быть разным.
 - 18. В механической картине мира принято, что пространство и время ...

- 1) неразрывно связаны и относительны;
- 2) существуют независимо друг от друга и абсолютны;
- 3) существуют как единая структура и абсолютны;
- 4) существуют независимо друг от друга и относительны.

19. В механической картине мира принято, что ...

Варианты ответов. Количество правильных ответов – 1

- 1) пространственные размеры тел не зависят от скорости движения, а темп времени изменяется;
- 2) пространственные размеры тел и временные интервалы изменяются в зависимости от скорости движения;
- 3) пространственные размеры тел и временные интервалы неизменны во всех системах отсчета;
- 4) пространственные размеры тел изменяются в зависимости от скорости движения, а время течет одинаково во всех системах отсчета.
- 20. Укажите положение, свойственное механической картине мира, но отвергнутое в современной научной картине мира.

- 1) движущее тело действует на движимое, а встречного противодействия нет;
- 2) единственная форма материи вещество, имеющее дискретное строение;
- 3) Вселенная в целом и её подсистемы являются результатом длительной эволюции;
- 4) в больших масштабах вещество во Вселенной распределено равномерно.

Практическое занятие №3

Законы сохранения. Пространство. Время. Симметрия

1. СЕМИНАР

Вопросы для обсуждения:

- 1) Открытие законов сохранения.
- 2) История развития представлений о пространстве и времени в философии и естествознании:
 - развитие понятия пространства и геометрия Евклида;
 - время (восприятие, философские и естественнонаучные толкования);
- пространство и время как инвариантные самостоятельные сущности (пустота древнегреческих атомистов);
 - абсолютное пространство-время классической науки и его характеристики;
- пространство и время как система отношений между материальными телами (пространство и время Аристотеля, современные представления);
 - концепция мирового эфира;
 - геометрия и физика в понимании пространства-времени;
- неклассические геометрии Лобачевского и Римана и понятия пространства-времени;
 - фрактальность;
 - необратимость времени;
- классический закон сложения скоростей и его нарушение в опыте Майкельсона-Морли, следствие из опыта Майкельсона-Морли;
- представление о внутреннем времени объектов (концепция метаболического времени А.П. Левича, хронобиология и хрономедицина);
 - взаимосвязь между пространством, временем, материей и ее движением;
- 3) Понятие о симметрии (греч. соразмерность правильность формы или неизменность законов) и ее проявлениях:
 - понятие симметрии в естествознании;
 - симметрии пространства и времени;
 - теорема Эмми Нётер о взаимосвязи симметрий с законами сохранения;
- законы сохранения энергии, импульса, момента импульса и соответствующие симметрии пространства, времени;
 - эволюция как цепочка нарушения симметрий;
 - важнейшие виды симметрии в физике, химии и биологии;
- сопоставление конкретного закона сохранения с соответствующей симметрией пространства-времени (выполнить практические задания).
- 4) От принципа относительности Г. Галилея и понятия инерциальных систем (однородность и изотропность пространства и абсолютность времени) к понятию относительности пространства-времени А.Эйнштейна:
 - принцип относительности Галилея;

- постулаты Эйнштейна;
- -основные релятивистские эффекты (следствия из постулатов Эйнштейна);
- Специальная теория относительности (СТО), возникновение и основные понятия СТО; парадоксы пространства-времени, связанные с движением;
- привести примеры, для которых предсказания СТО и классической механики совпадают (выполнить практические задания);
- Общая теория относительности (OTO) и перемена взглядов на топологию пространства и течение времени;
- принцип эквивалентности гравитационного поля и поля сил инерции;
 взаимосвязь материи и пространства-времени, эмпирические доказательства ОТО; соответствие ОТО и классической механики;
- развитие Метагалактики с позиций СТО и ОТО; сверхновые звезды, черные дыры и др. загадки Вселенной.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина, Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.
- 5. Лавриненко, В.Н. Концепции современного естествознания [Текст] / В.Н. Лавриненко, В.П. Ратников. М.: ЮНИТИ-ДАНА, 2012. 319 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.

2. Практические задания (задачи, тесты)

2.1. Примеры решения задач

Пример 1. Пуля, летящая горизонтально, попадает в шар, подвешенный на легком жестком стержне, и застревает в нем. Масса пули в 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара 1 м. Найти скорость пули, если известно, что стержень с шаром отклонился от удара пули на угол 10° .

Дано:
$$m_2 = 1000 m_1$$

 $l = 1 \,\mathrm{m}$
 $\alpha = 10 \,^\circ$ Решение
Запишем закон сохранения импульса для неупругого
удара в проекции на ось X
 $m_1 \upsilon_1 + m_2 \upsilon_2 = (m_1 + m_2) u$,
откуда $\upsilon_1 = \frac{m_1 + m_2}{m_1} u$.(1)

Здесь υ_1 и υ_2 – скорости пули и шара до столкновения; u – скорость шара и пули после их столкновения.

В выражении (1) кроме υ_1 неизвестна еще скорость u, которую можно найти по закону сохранения энергии.

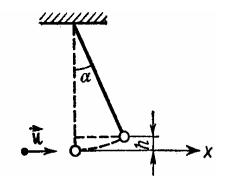
Пусть в результате столкновения с пулей центр масс шара поднялся на высоту h, тогда закон сохранения энергии

$$(m_1 + m_2)u^2 / 2 = (m_1 + m_2)gh,$$

откуда

$$u^2 = 2gh. (2)$$

Из рисунка видно, что


$$h = l - l \cos \alpha = l(1 - \cos \alpha).$$

Подставим выражение для h в уравнение (2):

$$u^2 = 2gl(1-\cos\alpha),$$

откуда
$$u = \sqrt{2gl(1-\cos\alpha)}$$
.

Тогда уравнение (1) можно привести к виду

$$v_1 = \frac{m_1 + m_2}{m_1} \sqrt{2gl(1 - \cos\alpha)}.$$
 (3)

Используя тригонометрическое уравнение $\sin(\alpha/2) = \sqrt{(1-\cos\alpha)/2}$, преобразуем выражение (3): $\upsilon_1 = 2\frac{m_1 + m_2}{m_1}\sin\frac{\alpha}{2}\sqrt{gl}$;

$$v_1 = 2 \frac{m_1 + 1000 m_2}{m_1} 0,09 \sqrt{9,8 \cdot 1} = 570 \text{ m/c}.$$

Ответ: $v_1 = 570$ м/с.

Пример 2. Масса элементарной частицы равна т, собственное время жизни равно $\tau_0 = 10^{-7} \, c$. Какой путь пройдет за свое время жизни эта частица, если ее энергия равна $E = 2E_0$?

Дано:
$$\tau_0 = 10^{-7} \, \mathrm{c}$$
 По условию задачи $E = 2E_0$, $E = 2E_0$, $E = 3 \cdot 10^8 \, \mathrm{m/c}$ Где $E -$ энергия движущейся частицы, $E = mc^2$; $E_0 -$ энергия покоя частицы $E_0 = m_0 c^2$. (3) Подставляя уравнения (2) и (3) в формулу (1), получаем

Подставляя уравнения (2) и (3) в формулу (1), получаем

$$mc^2 = 2 m_0 c^2$$
, или $m = 2m_0$, (4)

где *m* – масса движущейся частицы

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \,. \tag{5}$$

Из выражений (4) и (5) следует, что

$$\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = 2m_0,$$

или

$$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = 2. {(6)}$$

Из формулы (6) находим скорость частицы

$$v = \frac{c\sqrt{3}}{2}.$$

Время жизни частицы в лабораторной системе отсчета

$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{\tau_0}{\sqrt{1 - \frac{3}{4}}} = 2\tau_0.$$

Пройденный за это время путь равен

$$S = \upsilon \cdot \tau = \sqrt{3}c\tau_0 \,,$$

$$S = \sqrt{3} \cdot 3 \cdot 10^8 \cdot 10^{-7} = 51.9 \text{ m}.$$

Ответ: S = 51.9 м.

Пример 3. Определите периметр квадрата, движущегося со скоростью $\upsilon = \frac{c}{2}$ вдоль одной из своих сторон, если собственная длина стороны квадрата $\ell_0 = 1$ км.

Дано:
$$\ell_0 = 1000 \, \mathrm{m}$$
 При движении квадрата, длины двух его продольных сторон, параллельных вектору скорости, будут сокращаться до величины
$$l = l_0 \sqrt{1 - \frac{\upsilon^2}{c^2}} \; .$$

Длины двух других сторон, перпендикулярных вектору скорости, останутся равными ℓ_0 .

Тогда периметр получившийся фигуры (прямоугольника)

$$p = 2 \ell + 2 \ell_0 = 2 l_0 \sqrt{1 - \frac{v^2}{c^2}} + 2 \ell_0 = 2 l_0 \left(\sqrt{1 - \frac{v^2}{c^2}} + 1 \right).$$

$$p = 2 \cdot 10^3 \left(\sqrt{1 - \left(\frac{-^2}{4 - ^2} \right)} + 1 \right) = 2 \cdot 10^3 \left(\frac{\sqrt{3}}{2} + 1 \right) = 3732 \text{ M}.$$

Ответ: p = 3732 м.

2.2. Задачи для решения на практическом занятии

- **1.** Тело брошено под углом $\alpha = 45^{\circ}$ к горизонту со скоростью $\upsilon_0 = 15$ м/с. Используя закон сохранения энергии, определите скорость υ тела в высшей точке его траектории.
- **2.** Тело массой 0,2 кг, брошенное с начальной скоростью 20 м/с с башни высотой 25 м, в момент удара о землю имело скорость 22 м/с. Определите работу силы сопротивления воздуха.
- **3.** Из ствола орудия массой 5 т вылетает снаряд массой 100 кг. Кинетическая энергия снаряда на вылете 7,5 МДж. Какую кинетическую энергию получает орудие?
- **4.** Пуля массой m=15 г, летящая с горизонтальной скоростью $\upsilon=0.5$ км/с, попадает в баллистический маятник M=6 кг и застревает в нем. Определите высоту h, на которую поднимается маятник, откачнувшись после удара.
- **5.** Конькобежец массой 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой 3 кг со скоростью 8 м/с. На какое расстояние откатится при этом конькобежец, если коэффициент трения коньков о лед равен 0,02?

- **6.** Снаряд массой 20 кг, летевший горизонтально, попадает в платформу с песком массой 10^4 кг и застревает в песке. С какой скоростью летел снаряд, если платформа начала двигаться со скоростью 1 m/c?
- 7. Шар массой $m_1 = 2$ кг движется со скоростью $\upsilon_1 = 5$ м/с навстречу шару массой $m_2 = 3$ кг, движущемуся со скоростью $\upsilon_2 = 10$ м/с. Определите изменение кинетической энергии системы шаров после неупругого центрального удара.
- **8.** Стержень длиной 1 м движется мимо наблюдателя со скоростью 0.8c. Какой покажется наблюдателю его длина?
- **9.** Космический корабль пролетает мимо Вас со скоростью $\upsilon = 0.8c$. По Вашим измерениям его длина равна 90 м. Чему равна длина корабля в состоянии покоя?
- **10.** Время жизни заряженных частиц, покоящихся относительно ускорителя, равно τ . Чему равно время жизни частиц, которые движутся в ускорителе со скоростью 0.6c?
- **11.** Время жизни нестабильного мюона, входящего в состав космических лучей, измеренное земным наблюдателем, относительно которого мюон движется со скоростью, составляющей 95 % скорости света в вакууме, оказалось равным 6,4 мкс. Чему равно собственное время жизни мюона?
- **12.** Во сколько раз увеличивается масса частицы, движущейся со скоростью 0.6c по сравнению с ее массой покоя?
- **13.** Определите скорость движения релятивистской частицы, если её масса в два раза больше массы покоя.
- **14.** Во сколько раз замедляется ход времени при скорости движения часов 240000 км/с?
- **15.** Определите во сколько раз увеличится время жизни нестабильной частицы по часам неподвижного наблюдателя, если она будет двигаться относительно него со скоростью, равной 0.9c.
- **16.** Космический корабль движется со скоростью $\upsilon = 0.8c$ по направлению к Земле. Определите расстояние, пройденное им в системе отсчета, связанной с Землей за время 0.5 с, отсчитанное по часам в космическом корабле.
- **17.** Собственное время жизни частицы отличается на 1 % от времени жизни по неподвижным часам. Определите $\beta = \upsilon/c$.
- **18.** При движении с некоторой скоростью продольные размеры тела уменьшились в два раза. Во сколько раз изменилась масса тела?
- 19. Определите скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в 3 раза.
- **20.** Частица движется со скоростью $\upsilon = 0.8\,c$. Определите отношение полной энергии релятивистской частицы к ее энергии покоя.

- **21.** Определите, на сколько процентов полная энергия релятивистской элементарной частицы, вылетающей из ускорителя со скоростью $\upsilon = 0.75\,c$, больше ее энергии покоя.
- 22. Полная энергия релятивистской частицы в 8 раз превышает ее энергию покоя. Определите скорость этой частицы.
- **23.** Кинетическая энергия частицы оказалась равной ее энергии покоя. Определите скорость частицы.
- 24. Определите кинетическую энергию электрона, если полная энергия движущегося электрона втрое больше его энергии покоя.

2.3. Примеры выполнения тестов

Тема: Эволюция представлений о пространстве и времени.

Пример 1.

Представление о пространстве-времени как полноправной, активной, сложно устроенной составляющей материального мира характерно для:

Варианты ответов. Количество правильных ответов – 1

- 1) современной научной картины мира;
- 2) натурфилософских учений древнегреческих атомистов;
- 3) натурфилософской картины мира Аристотеля;
- 4) механической научной картины мира.

Решение:

Современные представления о пространстве и времени основаны на общей теории относительности, согласно которой свойства пространствавремени определяются присутствием и движением материальных тел и, в свою очередь, влияют на поведение материальных тел. Кроме того, они опираются на понимание вакуума не как абсолютной пустоты, лишенной материи, а как особой формы материи, обладающей сложной структурой и нетривиальными свойствами. В предшествовавших же картинах мира пространство и время рассматривались либо как пустота, вместилище материи (механическая картина мира, учения античных атомистов), либо вообще как система отношений между материальными телами, не обладающая самостоятельным существованием (натурфилософская картина мира Аристотеля).

Тема: Общая теория относительности.

Пример 2.

К числу наблюдательных подтверждений общей теории относительности относится:

Варианты ответов. Количество правильных ответов – 1

1) медленное смещение перигелия орбиты, по которой Меркурий обращается вокруг Солнца;

- 2) открытие Галилеем того факта, что все тела падают на Землю одинаково быстро;
- 3) тот факт, что спутник Юпитера Ио является самым вулканически активным телом в Солнечной системе;
 - 4) закон всемирного тяготения, открытый еще И. Ньютоном.

Решение:

Вулканы Ио не имеют отношения к теории относительности, ни к общей, ни к специальной. Закон всемирного тяготения справедлив лишь при условии, что гравитационные поля слабые — то есть тогда, когда предсказания классической механики и общей теории относительности (ОТО) совпадают, и потому надобности в ОТО нет. Открытие Галилеем того, что в условиях свободного падения все тела падают на Землю с одним и тем же ускорением $g = 9.8 \,\mathrm{m/c}^2$, опять-таки хорошо вписывалось в классическую механику и само по себе не является аргументом в пользу необходимости ОТО. А вот смещение перигелиев планетных орбит — это эффект, который предсказывает только ОТО, и потому его открытие стало веским свидетельством в пользу общей теории относительности.

Тема: Принципы симметрии, законы сохранения

Пример 3.

В ходе эмбрионального (зародышевого) развития симметрия живого организма ...

Варианты ответов. Количество правильных ответов – 1

- 1) всегда понижается;
- 2) всегда повышается;
- 3) практически не изменяется;
- 4) может изменяться в разные стороны в зависимости от видовой принадлежности.

Решение:

Согласно общему правилу, в ходе любого развития, на любом уровне организации материального мира симметрия всегда понижается. Эмбрион не является исключением: первоначально он представляет собой единственную оплодотворенную яйцеклетку, обладающую практически сферической симметрией. После завершения эмбриогенеза возникает организм, имеющий более низкую симметрию, состоящий из различающихся между собой органов, тканей и клеток.

Пример 4.

Свойством хиральности не обладают ...

- 1) контактные линзы;
- 2) молекулы ДНК;

- 3) ботинки;
- 4) гайки.

Решение:

Хиральность, по определению, есть отсутствие симметрии относительно зеркального отражения. Отражение в зеркале превращает левое в правое. Таким образом, если между левой и правой формами объекта есть существенная разница, он хирален. Все молекулы ДНК в живых организмах закручены только по правой спирали, то есть хиральны. Левый ботинок невозможно одеть на правую ногу, из чего следует, что ботинки хиральны. Гайку с левой резьбой невозможно навинтить на обычный «правый» болт, то есть она хиральна. А вот «левых» и «правых» контактных линз не бывает, точнее, они полностью эквивалентны.

2.4. Тесты для выполнения на практическом занятии

1. Согласно представлениям Демокрита и других атомистов...

Варианты ответов. Количество правильных ответов – 1

- 1) пространство и время существуют, пока существует материя;
- 2) атомы равномерно заполняют все пространство, не оставляя место пустоте;
- 3) пространство это неразрывная протяженность вещества и тонкой субстанции эфира;
- 4) существует пустота, в которой движутся, соединяются и распадаются атомы.
- **2.** Согласно представлениям И.Ньютона, абсолютное пространство и время...

Варианты ответов. Количество правильных ответов – 1

- 1) объективно существуют и связаны с материей и ее движением;
- 2) связаны с психическими особенностями человека;
- 3) остаются всегда одинаковыми, не связаны с материей и ее движением;
- 4) объективно существуют и связаны друг с другом.
- **3.** В механистической картине мира принято, что ...

- 1) пространство неоднородно;
- 2) пространство однородное, искривленное, неевклидово;
- 3) пространство во всех направлениях обладает одинаковыми свойствами;
- 4) свойства пространства разные в зависимости от направления.

4. Основу специальной теории относительности составляют постулаты:

Варианты ответов. Количество правильных ответов – 2

- 1) все физические процессы во всех инерциальных системах отсчёта протекают одинаково;
 - 2) скорость света зависит от выбора системы отсчета;
- 3) все механические процессы во всех инерциальных системах отсчёта протекают одинаково;
- 4) скорость света в вакууме постоянна и не зависит от движения источника и приемника света.
- **5.** Согласно представлениям специальной теории относительности, мы живем в...

Варианты ответов. Количество правильных ответов – 1

- 1) пятимерном пространстве-времени;
- 2) пространстве, которое имеет десять измерений;
- 3) четырехмерном пространстве-времени, где координаты взаимосвязаны друг с другом;
 - 4) трехмерном пространстве, к которому добавляется понятие времени.
- **6.** Согласно специальной теории относительности, инвариантными относительно инерциальной системы отсчёта являются ...

Варианты ответов. Количество правильных ответов – 2

- 1) темп хода времени;
- 2) пространственно-временной интервал между событиями;
- 3) длина тела;
- 4) скорость света.
- 7. Из специальной теории относительности следует, что ...

Варианты ответов. Количество правильных ответов – 2

- 1) движущееся относительно наблюдателя тело имеет больший размер, чем покоящееся;
- 2) движущееся относительно наблюдателя тело имеет меньший размер, чем покоящееся;
 - 3) движущиеся часы идут медленнее, чем покоящиеся;
 - 4) темп протекания времени не зависит от скорости движения.
 - 8. Из общей теории относительности следует, что...

- 1) пространство вблизи массивных тел описывается геометрией Евклида;
- 2) в поле силы тяжести время замедляет ход;

- 3) пространственно-временные свойства окружающего мира не зависят от расположения и движения тяготеющих масс;
 - 4) массы, создающие поле тяготения, искривляют пространство.
- **9.** Следствием общей теории относительности А. Эйнштейна является:

Варианты ответов. Количество правильных ответов – 2

- 1) замедление времени в гравитационном поле;
- 2) увеличение частоты электромагнитных волн в гравитационном поле;
- 3) нарушение причинно-следственной связи в гравитационном поле;
- 4) искривление луча света в гравитационном поле.
- 10. Всеобщими свойствами пространства и времени являются:

Варианты ответов. Количество правильных ответов – 2

- 1) объективность;
- 2) трехмерность;
- 3) единство прерывности и непрерывности;
- 4) ассиметрия.
- **11.** Между двумя моментами времени, как бы близко они не были расположены, всегда можно выделить третий. Это свойство времени называется:

Варианты ответов. Количество правильных ответов – 1

- 1) одномерностью;
- 2) непрерывностью;
- 3) однородностью;
- 4) необратимостью или однонаправленностью.
- **12.** Принцип эквивалентности в общей теории относительности означает, что ...

- 1) невозможно отличить ускоренное движение от покоя в гравитационном поле;
- 2) работа в поле сил тяготения эквивалентна работе электростатических сил;
- 3) выводы классической механики и теории относительности полностью эквивалентны;
- 4) темп протекания времени и свойства пространства одинаковы во всех системах отсчета.

13. Предсказания классической механики и специальной теории относительности совпадают, если...

Варианты ответов. Количество правильных ответов – 1

- 1) скорость объекта равна скорости света;
- 2) скорость объекта сравнима со скоростью света;
- 3) скорость соответствует скорости автомобиля;
- 4) отношение скорости объекта к скорости света стремится к нулю.
- **14.** Неизменность свойств объекта по отношению к выполненным над ним преобразованиями:

Варианты ответов. Количество правильных ответов – 1

- 1) хиральность;
- 2) асимметрия;
- 3) симметрия;
- 4) десимметрия.
- **15.** Понятие симметрии как неизменности свойств объекта по отношению к операциям, выполняемым над этим объектом, можно применить ...

Варианты ответов. Количество правильных ответов – 1

- 1) к материальным объектам и физическим законам;
- 2) к материальным объектам, физическим законам и математическим формулам;
 - 3) только к математическим формулам;
 - 4) к физическим законам и математическим формулам.
- **16.** Возрастанию степени симметричности соответствует следующий порядок следования геометрических фигур:

Варианты ответов. Количество правильных ответов – 1

- 1) равнобедренный треугольник, круг, квадрат, прямоугольник;
- 2) равнобедренный треугольник, круг, прямоугольник, квадрат;
- 3) равнобедренный треугольник, прямоугольник, квадрат, круг;
- 4) круг, квадрат, прямоугольник, равнобедренный треугольник.
- **17.** Понятие, характеризующее свойство объекта быть несовместимым быть со своим отображением в идеальном плоском зеркале, называется:

- 1) динамической симметрией;
- 2) хиральностью (киральностью);
- 3) калибровочной симметрией;
- 4) геометрической симметрией.

18. Существование электрона и позитрона, нейтрона и антинейтрона обусловлено симметрией.

Варианты ответов. Количество правильных ответов – 1

- 1) зеркальной;
- 2) калибровочной;
- 3) зарядовой;
- 4) пространственной.
- **19.** Наличие в природе положительных и отрицательных зарядов обусловлено симметрией...

Варианты ответов. Количество правильных ответов – 1

- 1) динамической;
- 2) пространственной;
- 3) геометрической;
- 4) калибровочной.
- **20.** Важное для уяснения особенностей живой и неживой материи понятие хиральность означает...

Варианты ответов. Количество правильных ответов – 1

- 1) повышение степени асимметричности живых организмов по мере их усложнения;
- 2) инвариантность физических законов при переходе от неживого к живому;
 - 3) зеркальную асимметрию молекул;
 - 4) усложнение физических законов для живых систем.
- **21.** В теории элементарных частиц симметрия проявляется в том, что уравнения теории инвариантны по отношению к замене ...

Варианты ответов. Количество правильных ответов – 1

- 1) частиц на античастицы;
- 2) античастиц на частицы;
- 3) положительно заряженных частиц на отрицательно заряженные;
- 4) отрицательно заряженных частиц на положительно заряженные.
- **22.** Разделение света и вещества, возникновение звёзд и галактик в процессе эволюций вселенной связано с:

- 1) нарушением симметрии;
- 2) повышение роли симметрии;
- 3) симметричными преобразованиями;
- 4) калибровочной симметрией.

23. Согласно теореме Э. Нётер, каждому виду симметрии соответствует свой закон сохранения. Установите соответствие:

Закон сохранения импульса связан с	однородностью пространства			
Закон сохранения энергии связан с	однородностью времени			
Закон сохранения момента импульса	изотропностью пространства			
связан с				

Практическое занятие №4

Структурные уровни и системная организация материи. Структуры микромира

1. Семинар

Вопросы для обсуждения:

- 1) Фундаментальные физические взаимодействия:
- гравитационное взаимодействие;
- электромагнитное взаимодействие;
- сильное взаимодействие;
- слабое взаимодействие;
- создание единой теории фундаментальных взаимодействий.
- 2) Элементарные частицы:
- характеристики элементарных частиц;
- классификация элементарных частиц.
- 3) Ядра:
- ядерные процессы;
- деление и синтез ядер.
- 4) Атомы.
- 5) Ядерная и атомная энергетика.
- 6) Источники энергии Солнца и звезд.
- 7) Молекулы.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина, Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.
- 5. Лавриненко, В.Н. Концепции современного естествознания [Текст] / В.Н. Лавриненко, В.П. Ратников. М.: ЮНИТИ-ДАНА, 2012. 319 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.

2. Практические задания (задачи, тесты)

2.1. Примеры решения задач

Пример 1. Определите, какую часть массы нейтрального атома ${}^{12}_{6}$ С $(m = 19,9272 \cdot 10^{-27} \,\mathrm{kr})$ составляет масса его электронной оболочки.

Дано:Решение
$$m = 19,9272 \cdot 10^{-27}$$
 кгЗарядовое число ядра атома $^{12}_{6}$ С, $m_e = 9,1 \cdot 10^{-31}$ кг $Z = 6$, $Zm_e \over m$ -?следовательно, в этом атоме 6 электронов.Масса всех электронов в атоме равна Z

$$Z=6$$

Масса всех электронов в атоме равна Zm_e .

$$\frac{Zm_e}{m} = \frac{6 \cdot 9, 1 \cdot 10^{-31}}{19,9272 \cdot 10^{-27}} = 2,74 \cdot 10^{-4}.$$

Otbet:
$$\frac{Zm_e}{m} = 2,74 \cdot 10^{-4}$$
.

Пример 2. Определите мощность ядерного реактора, если в течение часа реактор потребляет $m = 5,64 \cdot 10^{-4}$ кг урана U^{235} . При каждом делении ядра урана выделяется энергия приближенно равная 200 МэВ.

Дано:
$$m = 5,64 \cdot 10^{-4} \, \text{кг}$$
 Число ядер N , содержащихся в куске урана массой m $\Delta w = 200 \, \text{МэB} = 320 \cdot 10^{-13} \, \text{Дж}$ $\Delta t = 1 \, \text{ч} = 3600 \, \text{c}$ $N = N_A \frac{m}{A}$. Где A – атомный вес урана ($A = 235$).

$$N = N_{\rm A} \frac{m}{A}$$

При делении куска в течение часа выделяется энергия

$$W = \frac{N_{\rm A}}{A} m \cdot \Delta w,$$

где Δw — энергия, освобождающаяся при делении одного ядра.

Так как

$$P = \frac{W}{\Delta t}, \text{ то } P = N_A \frac{m\Delta w}{A\Delta t}.$$

$$P = 6,02 \cdot 10^{23} \frac{5,64 \cdot 10^{-4} \cdot 320 \cdot 10^{-13}}{235 \cdot 10^{-3} \cdot 3600} = 12800 \text{ кВт.}$$

Ответ: $P = 12800 \,\mathrm{kBt}$.

2.2. Задачи для решения на практическом занятии

- **1.** Сколько протонов и нейтронов содержится в ядре изотопа углерода $^{14}_{\ 6}\mathrm{C}$?
- **2.** В ядре изотопа гелия ${}_{2}^{3}$ Не все протоны заменили нейтронами, а нейтроны протонами. Какое получилось ядро?
- **3.** Определите, какую часть массы нейтрального атома $_{12}$ С $(m_a = 19,9272 \cdot 10^{-27} \text{ кг})$ составляет масса его электронной оболочки.
- **4.** Определите, пользуясь таблицей Менделеева, число нейтронов и протонов в ядрах атомов платины и урана.
- **5.** Определите зарядовые числа ядер, массовые числа и символы ядер, которые получаются, если в ядрах ${}^9_4\mathrm{Be}$, ${}^{13}_7\mathrm{N}$ и ${}^{23}_{11}\mathrm{Na}$ нейтроны заменить протонами, а протоны нейтронами.
- **6.** Определите плотность ядерного вещества, выражаемую числом нуклонов в 1 см^3 , если в ядре с массовым числом A все нуклоны плотно упакованы в пределах его радиуса.

Otbet: $\rho = 8,7 \cdot 10^{37} \text{ kg/m}^3$.

- **7.** Определите какая часть начального количества начального количества ядер радиоактивного изотопа распадется за время, равное двум периодам полураспада.
- **8.** Определите период полураспада радиоактивного изотопа, если 5/8 начального количества ядер этого изотопа распалась за время t = 849 с.

2.3. Примеры выполнения тестов

Пример 1.

Тема: Структуры микромира.

К числу критериев классификации элементарных частиц относятся ...

Варианты ответов. Количество правильных ответов – 1

- 1) спин, заряд, масса;
- 2) массовое число, зарядовое число, номер в периодической таблице;
- 3) размеры, форма, наличие липидной оболочки;
- 4) состав, строение, реакционная способность.

Решение:

Элементарные частицы классифицируются, в основном, по свойственным им квантовым числам – таким характеристикам, которые могут принимать лишь некоторые дискретные значения. Примером является спин (по его значению все частицы делятся на фермионы и бозоны), электрический заряд и некоторые другие виды зарядов (лептонный, барионный, цветовой). Важной характеристикой, не являющейся квантовым числом, служит масса (покоя) частицы. Составные частицы также могут классифицироваться по количеству и природе их составляющих: например, частицы,

состоящие из двух кварков, называют мезонами, а из трех кварков — барионами. Размеры и, тем более, форма элементарных частиц не являются удобными характеристиками, тем более, что для многих элементарных частиц, относящихся к группе фундаментальных, понятия размера и формы просто не имеют смысла. Массовое и зарядовое числа — это характеристики атомных ядер, номер в периодической таблице — химических элементов, реакционная способность — химических веществ, липидная оболочка — атрибут живых клеток.

Пример 2.

Тема: Структуры микромира.

К числу гипотетических элементарных частиц, то есть предсказанных теорией, но пока еще не обнаруженных экспериментами и наблюдениями, относятся:

Варианты ответов. Количество правильных ответов – 1

- 1) гравитон и бозон Хиггса;
- 2) гравитон и кварки;
- 3) кварки и нейтрино;
- 4) нейтрино и бозон Хиггса.

Решение:

Гравитон – квант гравитационного поля, переносчик гравитационного взаимодействия, – действительно не обнаружен экспериментально и не скоро будет обнаружен, поскольку для того, чтобы проявились квантовые свойства гравитационного поля, необходимы особые условия, которые имели место разве что на заре существования Вселенной. Более актуален вопрос о существовании бозона Хиггса – гипотетической частицы, которая ответственна за появление масс у элементарных частиц, которые эту массу имеют. Именно с целью поисков бозона Хиггса были потрачены миллиарды на строительство новых мощных ускорителей элементарных частиц в Европе и США. Что же касается кварков и нейтрино, то эти частицы также вначале были предсказаны сугубо теоретически, и лишь спустя много лет их существование подтвердилось эмпирическими методами.

2.4. Тесты для выполнения на практическом занятии

1. Фундаментальные взаимодействия по величине относительной интенсивности (от большей к меньшей) располагаются в следующем порядке:

- 1) слабое, гравитационное, сильное, электромагнитное;
- 2) сильное, электромагнитное, слабое, гравитационное;
- 3) гравитационное, электромагнитное, слабое, сильное
- 4) электромагнитное, слабое, сильное, гравитационное.

- **2.** Установите соответствие между системой и типом взаимодействия, доминирующим в ней:
 - 1) галактика;
 - 2) превращение нейтрона в протон;
 - 3) молекула.
 - а) электромагнитное;
- б) гравитационное;
- в) слабое.
- **3.** Взаимодействие обуславливающее связь между протонами и нейтронами в атомных ядрах...

Варианты ответов. Количество правильных ответов – 1

- 1) сильное;
- 2) слабое;
- 3) гравитационное;
- 4) электромагнитное.
- **4.** Элементарные частицы, не участвующие в сильном взаимодействии...

Варианты ответов. Количество правильных ответов – 1

- 1) лептоны;
- 2) адроны;
- 3) кварки;
- 4) бозоны.
- 5. Частицы способные участвовать в сильном взаимодействии...

- адроны;
- 2) лептоны;
- 3) кварки;
- 4) фермионы.
- **6.** Установите соответствие между структурными единицами вещества и их характерными размерами:
 - 1) ядра атомов;
 - 2) атомы;
 - 3) бактерии;
 - а) несколько микрометров (10^{-6} м) ;
 - б) доли миллиметра (10^{-3} м) ;
 - в) несколько фемтометров (10^{-15} м);
 - Γ) доли нанометра (10^{-9} м).

7. Укажите правильную последовательность в структурной иерархии микромира (от меньшего к большему):

Варианты ответов. Количество правильных ответов – 1

- 1) кварк;
- 2) ядро;
- 3) атом;
- 4) нуклон.
- **8.** Укажите правильную последовательность в структурной иерархии материи (от большего к меньшему):

Варианты ответов. Количество правильных ответов – 1

- 1) молекулы;
- 2) атомы;
- 3) нейтроны;
- 4) ядра атомов.
- 9. Античастица электрона это...

Варианты ответов. Количество правильных ответов – 1

- 1) лептон;
- 2) позитрон;
- 3) фермион;
- 4) кварк.
- **10.** Концепция виртуальных частиц, возникающих и исчезающих в вакууме, не противоречит закону сохранения энергии, поскольку...

Варианты ответов. Количество правильных ответов – 1

- 1) виртуальные частицы живут слишком короткое время, чтобы их энергию можно было измерить с достаточной точностью;
 - 2) энергии всех виртуальных частиц в точности равны нулю;
- 3) в современной науке установлено, что закон сохранения энергии выполняется не для всех фундаментальных взаимодействий;
- 4) виртуальные частицы чисто умозрительная концепция, которая не может быть проверена никакими реальными экспериментами.
- **11.** Укажите фундаментальные частицы, образующие строительный материал вещества:

- 1) бозоны, кварки, адроны, фотоны;
- 2) гипероны, кванты поля, фотоны;
- 3) фотоны, лептоны, бозоны, кварки;
- 4) лептоны, кварки.

12. Укажите частицы, которые являются переносчиками фундаментальных взаимодействий:

Варианты ответов. Количество правильных ответов – 1

- 1) глюоны, мезоны, гравитоны, кварки;
- 2) фотоны, лептоны, глюоны, гравитон;
- 3) фотоны, глюоны, промежуточные векторные бозоны, гравитоны;
- 4) лептоны, промежуточные векторные бозоны, гравитоны, кварки.
- **13.** Квантово-механическая система, образованная в результате электромагнитного взаимодействия электронов и ядра, представляет собой...

Варианты ответов. Количество правильных ответов – 1

- 1) ядро атома;
- 2) атом;
- 3) молекулу;
- 4) элементарную частицу.
- **14.** Укажите ряд, содержащий только частицы, существование которых подтверждено экспериментально.

Варианты ответов. Количество правильных ответов – 1

- 1) протон, позитрон, гравитон;
- 2) гравитон, нейтрино, электрон;
- 3)фотон, глюон, нейтрино;
- 4) мюон, гравитон, нейтрон.
- **15.** Укажите верные высказывания относительно устойчивости изотолов.

Варианты ответов. Количество правильных ответов – 1

- 1) в природе встречаются как стабильные, так и радиоактивные изотопы;
- 2) бомбардируя природные изотопы частицами высоких энергий, можно получать искусственные радиоактивные изотопы;
- 3) все изотопы, встречающиеся в природе, стабильны; радиоактивны только искусственные изотопы;
- 4) при распаде искусственных изотопов возникает особенно вредное излучение потоки антипротонов и антиядер гелия.
- **16.** В природе встречаются как стабильные, так и радиоактивные изотопы. Удельная энергия связи ядра (энергия, приходящаяся на один ну-клон) с ростом числа нуклонов (A) сначала растёт, достигая максимума для ядер железа (A=56), а затем убывает. Из этого следует, что...

Варианты ответов. Количество правильных ответов – 1

1) в природе железо самый распространенный химический элемент;

- 2) все самые легкие ядра, как и самые тяжелые, крайне нестабильны;
- 3)для ядер с A < 56 возможны реакции синтеза лёгких ядер с выделением энергии;
- 4) для ядер с A > 56 возможны реакции деления ядер с выделением энергии.
- 17. Установленный экспериментально закон радиоактивного распада имеет статистический характер и состоит в том, что:

Варианты ответов. Количество правильных ответов – 1

- 1) среднее количество ядер радиоактивного вещества распадающихся за секунды, пропорционально полному числу имеющихся ядер;
- 2) среднее количество ядер радиоактивного вещества, распадающихся за секунду, пропорционально периоду полураспада;
- 3) время, за которое количество радиоактивного вещества уменьшается вдвое, не зависит от этого количества;
- 4) период полураспада радиоактивного изотопа обратно пропорционален массовому числу этого изотопа.

18. Реакциями термоядерного синтеза называют:

- 1) реакции синтеза атомных ядер из ядер более лёгких химических элементов, происходящие при очень высоких температурах и давлении;
 - 2) реакции образования химических элементов, идущие в звёздах;
- 3) реакции образования новых химических соединений, происходящие при взрывных процессах и высоких температурах;
- 4) химические реакции, происходящие только при очень высоких температурах и давлении.

Практическое занятие №5

Структурные уровни и системная организация материи. Химические системы

1. Семинар

Вопросы для обсуждения:

- 1)От алхимической концепции до формирования концептуальной базы химии:
 - этапы становления химии;
 - важнейшие химические открытия, законы;
 - периодический закон и периодическая система;
 - виды химической связи.
 - 2) Химические системы:
- основные химические понятия: «химический элемент», «атом», «изотопы», «молекула», «вещество»;
 - мономеры и полимеры;
 - катализаторы, биокатализаторы;
- методы исследования веществ в современной химии; качественный и количественный состав вещества;
 - современные представления о строении атома;
 - новые химические технологии;
 - перспективные классы веществ и химических соединений.
 - 3) Химические реакции и реакционная способность веществ:
 - химические реакции или процессы;
 - экзо- и эндотермические процессы;
 - химическая кинетика;
 - энергии активации;
- катализ, автокатализ; свойства катализаторов; влияние различных факторов на скорость химических реакций;
 - закон действующих масс;
 - правило Вант-Гоффа;
 - состояние равновесия и условия его смещения;
 - принцип Ле Шателье;
- использование знаний о закономерностях химических процессов для решения конкретных задач (*выполнить практические задания*).

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. – Пенза: ПГУАС, 2016.
- 4. Рузавин, Г.И. Концепции современного естествознания [Текст] / Г.И. Рузавин. М.: Проспект, 2015. 245 с.
- 5. Брызгалина, Е. В. Концепции современного естествознания [Текст] / Е. В. Брызгалина. М:. Проспект, 2015. 496 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014.-484 с.

2. Практические задания (задачи, тесты)

2.1. Методические указания для решения задач по химии

- **1.** Запишите уравнение реакции (при необходимости), не забудьте расставить коэффициенты. Для наглядности, над соответствующими соединениями, запишите известные и неизвестные данные.
- 2. Определите, каким способом можно найти неизвестные данные. Можно ли это сделать в одно действие или в несколько. Возможно, придется воспользоваться таблицей Менделеева (например, для определения молекулярной массы) или другими справочными данными (например, при переводе массы вещества в объем, необходимо знать его плотность).
- **3.** Далее, при необходимости, составьте пропорцию или используйте понятие количества вещества. Либо подставьте известные и найденные данные в необходимые формулы.
- **4.** При необходимости использования формул, следите за единицами измерений. Иногда бывает необходимо перевести их в систему СИ.

2.2. Примеры решения задач

Пример 1. Определите продукты радиоактивного распада X, Y u Z: ${}_{88}^{226}$ Ra-(α-распад) \to X-(α-распад) \to Y-(β-распад) \to Z.

Решение

При α -распаде $_{88}^{226}$ Ra его массовое его число уменьшается на четыре единицы и становится равным

$$A_X = 226 - 4 = 222$$
.

Заряд ядра при этом уменьшается на две единицы и оказывается равным

$$Z_X = 88 - 2 = 86$$
.

Таким образом, первый распад приводит к образованию изотопа радона $_{86}^{222}{\rm Rn}.$

Продукт α-распада радона определяем аналогичным образом:

$$A_{\rm Y} = 222 - 4 = 218$$
, $Z_{\rm Y} = 86 - 2 = 84$.

В результате второго распада получаем изотоп полония 84 218 Ро;

β-распад полония не изменяет массовое число элемента, однако увеличивает на единицу заряд его ядра:

$$Z_Z = 84 + 1 = 85$$
.

Конечным продуктом данной цепочки распадов станет элемент с номером 85, т.е. астат ($_{85}^{218}{\rm At}$). Окончательная схема ядерных превращений будет иметь вид:

$$_{88}^{226}$$
Ra -(α -распад) \rightarrow $_{86}^{222}$ Rn -(α -распад) \rightarrow $_{84}^{218}$ Po -(β -распад) \rightarrow $_{85}^{218}$ At.

Пример 2. Составьте электронные формулы атомов в основном состоянии для следующих элементов: фосфор(15), кальций(20) и титан(22). В скобках указан порядковый номер элемента.

Решение

Фосфор находится в главной подгруппе пятой группы и в третьем периоде. Общее число электронов у этого атома равно 15, и они расположены на трех электронных слоях. Первые два электронных слоя атома фосфора заполнены полностью (электронная конфигурация атома Ne: $1s^22s^22p^6$), число электронов на третьем слое у фосфора равно номеру группы. Из этих электронов два располагаются на 3s-орбитали, а три — на 3р. Таким образом, электронная формула атома фосфора имеет вид:

$$_{15}P \ 1s^2 2s^2 2p^6 3s^2 3p^3$$
 .

Для составления электронной формулы атома кальция к электронной конфигурации атома $Ar~(1s^22s^22p^63s^23p^6)$ необходимо добавить два электрона, которые располагаются на 4s-орбитали. В результате получаем следующую электронную формулу:

$$_{20}$$
Ca $1s^22s^22p^63s^23p^64s^2$.

Элемент титан расположен в побочной подгруппе 4 группы элементов и в четвертом периоде. Он относится к переходным элементам четвертого периода, у которых происходит заполнение 3d-оболочки. На этой оболочке находятся 2 электрона. Общее число электронов у атома титана равно 22. Для составления электронной формулы титана к электронной формуле кальция необходимо добавить два d-электрона (3d²):

$$_{22}Ti\ 1s^22s^22p^63s^23p^63d^24s^2\ .$$

Пример 3. Температурный коэффициент скорости реакции равен трем. Во сколько раз увеличится скорость реакции при повышении температуры на 40° C.

Решение

Для решения задачи используем математическое выражение принципа Вант-Гоффа:

 $V_2/V_1 = \gamma^{\Delta t/10}.$

Подставляя в это выражение значения соответствующих величин, получаем:

 $V_2/V_1 = 3^{40/10} = 3^4 = 81.$

Таким образом, при повышении температуры на 40° С скорость реакции увеличится в 81 раз.

Otbet: $V_2/V_1 = 81$.

2.3. Задачи для решения на практическом занятии

- 1. Определите массу одной молекулы серной кислоты.
- 2. Определите число атомов, содержащихся в 1 л (н.у.) кислорода.
- **3.** Газовая смесь содержит 12 л NH_3 , 5 л N_2 и 3 л H_2 , измеренных при н.у. Рассчитать объемные доли газов в этой смеси и ее среднюю молярную массу.
- **4.** Определите, какие из перечисленных ниже молекул CO, CO₂, C_2H_2 , H_2S , PH_3 , Cl_2 являются **неполярными.**
- **5.** Определите число протонов, нейтронов и электронов у изотопов ${}_{90}{}^{227}\mathrm{X}$ и ${}_{90}{}^{234}\mathrm{X}$; у изобаров ${}_{83}{}^{215}\mathrm{Y}$ и ${}_{85}{}^{215}\mathrm{Z}$. Назовите эти элементы.
- **6.** Определите значения главного и побочного квантовых чисел для следующих состояний электронов: 4d, 5f и 7s.
- **7.** Составьте электронные формулы следующих элементов: магний(12), хлор(17) и железо(26). В скобках указан порядковый номер элемента.
- **8.** При понижении температуры на 30°C скорость химической реакции уменьшилась в 8 раз. Определите температурный коэффициент скорости.
- **9.** При электролизе расплава хлорида натрия на аноде выделилось 22,4 л (н.у.) газа. Определите массу (в граммах) продукта, выделившегося на катоде.
 - 10. Термохимическое уравнение реакции имеет вид:

$$2SO_{3(r)} \rightleftharpoons 2 SO_{2(r)} + O_{2(r)}$$
 ; $\Delta H = +197.8$ кДж.

В какую сторону сместится равновесие этой реакции при понижении температуры?

11. Термохимическое уравнение реакции имеет вид:

$$CH_3CHO_{(\Gamma)} \rightleftharpoons CH_{4(\Gamma)} + CO_{(\Gamma)}$$
; $\Delta H = -19.3$ кДж.

В какую сторону сместится равновесие этой реакции при повышении температуры?

12. В какую сторону сместится равновесие реакции

$$CH_3CHO_{(\Gamma)} \rightleftharpoons CH_{4(\Gamma)} + CO_{(\Gamma)}$$

при повышении давления?

2.4. Примеры выполнения тестов

Пример 1.

Атомно-молекулярное учение основывалось на концепции ...

Варианты ответов. Количество правильных ответов – 1

- 1) дискретности строения вещества;
- 2) непрерывности структуры вещества;
- 3) периодической зависимости свойств химических элементов от их номера
 - 4) корпускулярно-волнового дуализма.

Решение:

Само слово «атом» в переводе с греческого означает «неделимый». Таким образом, атомно-молекулярное учение с необходимостью предполагает, что все тела и вещества состоят из некоторых неделимых и неизменных частиц, то есть имеют дискретную структуру (согласно словарю Ожегова, дискретный – раздельный, состоящий из отдельных частей). Если бы вещество имело непрерывную структуру (как считал, например, Аристотель), его можно было бы бесконечно делить на все более мелкие фрагменты, нигде не встречая каких-либо естественных преград этому процессу. Основы атомно-молекулярного учения были заложены еще в XVII веке, в то время как периодический закон был открыт лишь во второй половине XIX века, а концепция корпускулярно-волнового дуализма – уже в XX веке.

Пример 2.

Константа скорости химической реакции $\mathrm{HCHO}_{(\Gamma)} = \mathrm{H}_{2(\Gamma)} + \mathrm{CO}_{(\Gamma)}$ при повышении температуры от 520°C до 560°C изменяется от 5,6·10⁻⁶ до 3,5·10⁻⁶ л/(моль с). Температурный коэффициент скорости данной реакции равен..

Варианты ответов. Количество правильных ответов – 1

- 1) 8;
- 2) 4;
- *3) 2;*
- *4)* 16.

Решение:

Согласно математическому выражению правила Вант-Гоффа,

$$\frac{r_2}{r_1} = \frac{k_2}{k_1} = \gamma^{\frac{T_2 - T_1}{10}} = \gamma^{\Delta T/10}.$$

При увеличении температуры от 520°C до 560°C константа скорости химической реакции увеличится в

$$\gamma^{\Delta T/10} = \gamma^4 = \frac{5.6 \cdot 10^{-5}}{3.5 \cdot 10^{-6}} = 16$$
 pas.

Следовательно,

$$\gamma = \sqrt[4]{\frac{5,6 \cdot 10^{-5}}{3,5 \cdot 10^{-6}}} = \sqrt[4]{16} = 2.$$

Ответ: $\gamma = 2$.

Пример 3. Наименьшее количество электричества потребуется для получения путем электролиза (выход по току принять равным 100%) 1 грамма...

Варианты ответов. Количество правильных ответов – 1

- 1) Hg;
- 2) Cu;
- *3) Cr*;
- *4)* Pd.

Решение:

Согласно закону Фарадея

$$m = \frac{QM_{\text{B-Ba}}}{n_{\rho}F},$$

где n_e — число моль электронов, необходимое для окисления или восстановления 1 моль вещества.

Количество электричества, необходимое для получения вещества путем электролиза равно

$$Q = \frac{mn_e F}{M_{\text{R-Ba}}}.$$

При одинаковых значениях массы m=1 г и $n_e=2$ количество затраченного электричества будет тем меньше, чем больше значение молярной массы выделяемого вещества. Наибольшее значение молярной массы у ртути. Следовательно, наименьшее количество электричества потребуется для получения 1 г ртути.

Ответ: Нд.

2.5. Тесты для выполнения на практическом занятии

- **1.** Составьте иерархическую последовательность эволюции химических знаний:
 - а) учение о составе;
 - б) учение о закономерностях химических процессов;
 - в) эволюционная химия;
 - г) структурная химия.

Варианты ответов. Количество правильных ответов – 1

1) б-а-в-г; 2) а-г-б-в; 3) а-б-г-в; 4) г-а-б-в.

2. Согласно атомно-молекулярному учению молекулы вещества:

Варианты ответов. Количество правильных ответов – 1

- 1) состоят из атомов;
- 2) неделимы;
- 3) состоят из элементарных частиц;
- 4) всегда двухатомны.
- **3.** Наименьшая структурная единица элемента, сохраняющая его химические свойства это:

Варианты ответов. Количество правильных ответов – 1

- 1) атом;
- 2) электрон;
- 3) молекула;
- 4) вещество.
- **4.** Система, состоящая из большой совокупности атомов или молекул одного вида, представляет собой...

Варианты ответов. Количество правильных ответов – 1

- 1) тело;
- 2) элемент;
- 3) вещество;
- 4) смесь веществ.
- **5.** Азот-14 и азот-15 являются относительно друг друга...

Варианты ответов. Количество правильных ответов – 1

- 1) простыми веществами;
- 2) изотопами;
- 3) мономерами;
- 4) молекулами.
- **6.** Согласно современной точке зрения, систематизация элементов по подгруппам периодической системы связана с ...

Варианты ответов. Количество правильных ответов – 1

- 1) числом полностью заполненных энергетических уровней;
- 2) общим числом электронов;
- 3) одинаковым электронным строением валентных подуровней;
- 4) числом энергетических уровней, по которым распределены электроны.
- 7. В химическом процессе атомы конкретного элемента ...

- 1) изменяют ядерное строение;
- 2) сохраняют заряд ядра, а следовательно, свою индивидуальность;

- 3) превращаются в атомы других элементов;
- 4) изменяют электронное строение внутренних и внешних слоев.
- 8. В химических процессах молекулы ...

Варианты ответов. Количество правильных ответов – 1

- 1) одних веществ превращаются в молекулы других;
- 2) не изменяют свой состав;
- 3) сохраняют свой качественный и количественный состав;
- 4) не изменяют свою электронную структуру.
- 9. Химические превращения веществ сопровождаются....

Варианты ответов. Количество правильных ответов – 1

- 1) превращением одних молекул в другие;
- 2) перестройкой внутренних электронных оболочек атомов;
- 3) превращением атомов одних элементов в атомы других элементов;
- 4) перестройкой внешних электронных оболочек атомов.
- 10. На реакционную способность вещества не влияет:

Варианты ответов. Количество правильных ответов – 1

- 1) состав ядра и характер связи в нем;
- 2) структура молекул;
- 3) уровень организации системы реагентов;
- 4) термодинамические и кинетические закономерности.
- 11. Правило Вант Гоффа в химической кинетике выражает ...

Варианты ответов. Количество правильных ответов – 1

- 1) влияние температуры на скорость реакции;
- 2) зависимость скорости реакции от природы катализатора;
- 3) зависимость скорости реакции от концентрации реагирующих веществ;
 - 4) влияние внешних воздействий на смещение равновесия.
 - 12. Закон действующих масс в химической кинетике выражает...

- 1) зависимость скорости реакции от концентрации реагирующих веществ;
 - 2) влияние внешних воздействий на смещение равновесия;
 - 3) зависимость скорости реакции от природы катализатора;
 - 4) влияние температуры на скорость реакции.

13. Зависимость скорости химической реакции от температуры выражается ...

Варианты ответов. Количество правильных ответов – 1

- 1) температура не влияет на скорость реакции;
- 2) принципом Ле Шателье;
- 3) уравнениями Вант Гоффа и Аррениуса;
- 4) законом действующих масс.
- 14. Кинетическим условием состояния равновесия является:

Варианты ответов. Количество правильных ответов – 1

- 1) равенство скоростей прямого и обратного процессов;
- 2) равенство концентраций всех компонентов системы;
- 3) полное прекращение процесса;
- 4) поочередное протекание прямого и обратного процессов.
- 15. На состояние химического равновесия не оказывает влияние:

Варианты ответов. Количество правильных ответов – 1

- 1) катализатор;
- 2) концентрация реагента;
- 3) температура;
- 4) концентрация продукта.

16. Для увеличения скорости химической реакции: $2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(\Gamma)$ следует...

Варианты ответов. Количество правильных ответов – 1

- 1) увеличить концентрацию оксида серы (IV), SO_2 ;
- 2) увеличить температуру;
- 3) уменьшить концентрацию оксиды серы (IV), SO_2 ;
- 4) увеличить концентрацию оксида серы (VI), SO_2 .
- **17.** Влияние природы реагирующих веществ на скорость химической реакции в законе действующих масс определяется:

Варианты ответов. Количество правильных ответов – 1

- 1) показателями степеней в уравнении;
- 2) концентрациями взаимодействующих веществ;
- 3) этот закон не учитывает влияние природы реагирующих веществ;
- 4) величиной константы скорости химической реакции.
- **18.** Если давление в системе увеличится в 2 раза, то скорость гомогенной элементарной реакции $2A_{(r)} + B_{(r)} \to A_2B_{(r)}$...

- 1) увеличится в 2 раза;
- 2) увеличится в 4 раза;

- 3) уменьшится в 8 раз;
- 4) увеличится в 8 раз.
- **19.** Если температура в системе увеличится на 30 град (температурный коэффициент равен 3), то скорость гомогенной элементарной реакции:

Варианты ответов. Количество правильных ответов – 1

- 1) увеличится в 27 раз;
- 2) уменьшится в 27 раз;
- 3) увеличится в 90 раз;
- 4) уменьшится в 90 раз.
- **20.** Давая характеристику катализатора, можно сказать, что катализатор это вещество, которое...

Варианты ответов. Количество правильных ответов – 1

- 1) изменяет состояние химического равновесия;
- 2) увеличивает скорость химической реакции;
- 3) повышает величину энергии активации реакции;
- 4) понижает величину энергии активации реакции.
- **21.** Увеличение скорости химической реакции в присутствии катализатора связано с

Варианты ответов. Количество правильных ответов – 1

- 1) повышением энергии активации;
- 2) понижением энергии активации;
- 3) увеличением скоростей движения реагирующих молекул;
- 4) увеличением концентрации веществ в системе.
- 22. Катализ называется гомогенным, если...

Варианты ответов. Количество правильных ответов – 1

- 1) реагирующие вещества и катализатор представляют однофазную однородную систему;
 - 2) катализатор представляет собой гомогенную смесь;
 - 3) катализатор представляет собой раствор;
 - 4) химический процесс происходит на поверхности катализатора.
- **23.** Эволюционная химия, как один из уровней химического знания, изучает...

- 1) происхождений различных веществ;
- 2) эволюцию химических знаний;
- 3) историю развития химии;
- 4) самоорганизацию и саморазвитие химических систем.

24. Основной практической задачей химии является:

- 1) выделение чистых веществ из природных смесей;
- 2) теоретическое исследование свойств веществ;
- 3) получение веществ с заданными свойствами;
- 4) разделение природных смесей.

Практическое занятие №6

Космология (мегамир и его свойства)

1. Семинар

Вопросы для обсуждения:

- 1) Формирование представлений о Вселенной:
- геоцентрическая модель устройства мира;
- гелиоцентрическая модель устройства мира;
- Вселенная предстала как эволюционирующий объект, имеющий свое начало;
- изучение строения Вселенной и наблюдение за всеми имеющимися в ней объектами; решение проблемы возникновения Вселенной.
 - 2) Методы измерения характеристик космических объектов:
 - методы определения расстояний до космических объектов;
 - методы определения скоростей космических объектов;
 - методы измерения температуры и химического состава.
 - 3) Эволюция Вселенной:
 - концепции происхождения Вселенной;
 - содержание и значение закона Хаббла;
 - сценарий стационарной Вселенной и «Космология Большого Взрыва»;
 - рождение частиц по современной модели развития Вселенной;
 - первые секунды Вселенной;
 - от первых минут Вселенной до образования звезд и галактик;
 - образование тяжелых химических элементов;
 - сценарии будущего Вселенной;
 - антропный принцип.
 - 4) Острова Вселенной галактики:
 - общее представление о галактиках и их изучении;
 - наша Галактика Млечный путь;
 - межзвездная среда;
 - понятие Метагалактики.
 - 5) Звезды:
 - общая характеристика звезд;
 - звезда плазменный шар;
 - межзвездная среда;
 - процесс звездообразования;
 - нуклеосинтез: происхождение химических элементов;
- поздние стадии эволюции звезды: от красного гиганта до белого карлика и далее;
 - вспышки сверхновых и образование нейтронных звезд;
 - черные дыры.

- 6) Солнечная система:
- планеты и их спутники;
- строение планет;
- происхождение планет;
- открытие других планетных систем.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина, Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.
- 5. Лавриненко, В.Н. Концепции современного естествознания [Текст] / В.Н. Лавриненко, В.П. Ратников. М.: ЮНИТИ-ДАНА, 2012. 319 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.

2. Практические задания (задачи, тесты)

2.1. Примеры решения задач

Пример 1. Оцените возможный радиус черной дыры для звезды, масса которой больше солнечной массы в 10 раз.

Дано:						
$M = 10M_0$						
$G = 6.67 \cdot 10^{-11} \mathrm{H \cdot m^2/kr^2}$						
$c = 3 \cdot 10^8 \mathrm{m/c}$						
R-?						

Решение

Радиус черной дыры (без учета эффектов общей теории относительности) находится из условия равенства второй космической скорости и скорости света.

Вторая космическая скорость — это скорость, с которой тело может уйти за пределы поля тяготения.

Её можно определить из условия закона сохранения энергии в точке, удаленной от центра тяготения на расстояние R, и на бесконечно большом расстоянии от него:

$$E_{p_R} + E_{k_R} = E_{p_\infty} + E_{k_\infty}$$
, или $\frac{m v^2}{2} - G \frac{m M}{R} = 0$,

откуда

$$\upsilon = \sqrt{\frac{2GM}{R}} \ .$$

Приравнивая вторую космическую скорость к скорости света, получаем

$$c=\sqrt{\frac{2GM}{R}}\;,$$

откуда

$$R = \frac{2GM}{c^2}.$$

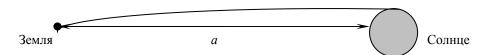
$$\frac{0^{30}}{10^{30}} = 29.48 \cdot 10^3 \,\mathrm{M}$$

$$R = \frac{2 \cdot 6,67 \cdot 10^{-11} \cdot 10 \cdot 1,989 \cdot 10^{30}}{\left(3 \cdot 10^{8}\right)^{2}} = 29,48 \cdot 10^{3} \,\mathrm{m}.$$

Otbet: $R = 29,48 \cdot 10^3 \text{ m}$.

Пример 2. Оцените время свободного падения тела с орбиты Земли на Солнце.

Дано:


a – расстояние от Земли до Солнца.

T — период обращения Земли вокруг Солнца.

t-?

Решение

Падение тела с Земли на Солнце можно рассматривать как движение по очень сильно вытянутой узкой эллиптической орбите, касающейся Земли и Солнца. Большая ось такого эллипса равна расстоянию от Земли до Солнца.

Используем третий закон Кеплера, сравнивая движение Земли вокруг Солнца с падением данного тела:

$$\frac{T^2}{T_1^2} = \frac{a^3}{a_1^3} \,,$$

где a – расстояние от Земли до Солнца (большая полуось Земной орбиты); a_1 – большая полуось мнимой орбиты падающего тела ($a_1 = \frac{a}{2}$); T – период обращения Земли вокруг Солнца; T_1 – период обращения падающего тела по мнимой орбите.

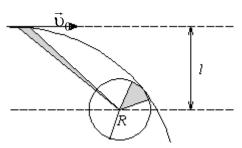
Из формулы третьего закона Кеплера следует, что

$$T_1^2 = \frac{a_1^3 T^2}{a^3} = \frac{T^2}{8}, \qquad T_1 = \frac{T}{2\sqrt{2}} = 2t,$$

откуда

$$t = \frac{T}{4\sqrt{2}}.$$

Если T = 365 суток, то t = 65 суток.


Ответ: t = 65 суток.

Пример 3. На большом расстоянии от Земли метеорит движется относительно неё со скоростью υ_0 . Если бы Земное притяжение отсутствовало, метеорит прошел бы на расстоянии l от центра Земли. Выясните, при каком наибольшем значении «прицельного» расстояния l метеорит будет захвачен Землей.

Дано: υ_0 – скорость метеорита относительно Земли $l_{\rm max}$ – ?

Решение

На большом расстоянии от Земли, где потенциальную энергию взаимодействия с Землей можно считать равной нулю, метеорит имеет скорость υ_0 и его полная энергия равна кинетической $\frac{m\upsilon_0^2}{2}$.

Если бы начальная скорость метеорита υ_0 была равна нулю, то, двигаясь только под действием силы притяжения Земли по прямой, он обязательно упал бы на Землю, и при падении имел у поверхности Земли скорость, равную второй космической скорости $\upsilon_{II} = 11,2\,$ км/с.

Если начальная скорость метеорита отлична от нуля, то он в поле земного тяготения движется по гиперболе и будет захвачен Землей только тогда, когда эта гипербола «заденет» Земной шар.

При движении метеорита в поле тяжести Земли выполняется закон сохранения энергии:

$$\frac{mv_0^2}{2} = \frac{mv^2}{2} + mgR, \qquad (1)$$

где υ-скорость метеорита в точке касания Земли.

Второй закон Кеплера о постоянстве секторной скорости справедлив и для разомкнутых траекторий:

$$lv_0 = Rv. (2)$$

Решая систему уравнений (1) и (2), найдем

$$l = R\sqrt{1 + \frac{2gR}{\upsilon_0^2}} = R\sqrt{1 + \left(\frac{\upsilon_{\text{II}}}{\upsilon_0}\right)^2}.$$

Ответ: метеорит упадет на Землю только тогда, когда его прицельное расстояние $l_{\rm max}$ не превосходит значения радиуса Земли.

2.2. Задачи для решения на практическом занятии

- 1. В ядре галактики M87 находится черная дыра с массой, равной $5 \cdot 10^9$ масс Солнца. Найдите гравитационный радиус черной дыры (расстояние от центра тяготения, на котором вторая космическая скорость равна скорости света), а также среднюю плотность вещества в пределах гравитационного радиуса.
- **2.** Оцените расстояние до галактики, если красное смещение линии $H_{\alpha}=656\lambda$ водорода (длина волны нм) составляет 10 нм. Постоянная Хаббла $H=75\,\mathrm{km}\;\mathrm{c}^{\text{-1}}/\mathrm{Mnk}$.
- **3.** Определите перигелийное расстояние астероида Икар, если большая полуось его орбиты равна 160 млн. км, а эксцентриситет составляет 0,83.
- **4.** Считая орбиты Земли и Марса круговыми, рассчитайте продолжительность года на Марсе. При решении задачи необходимо учитывать, что Марс находится дальше от Солнца, чем Земля, в 1,5 раза.
- 5. Космический телескоп Хаббл в 1994 году получил фотографии самой далекой планеты Солнечной системы Плутона и его Спутника Харона. Анализ снимков позволил сделать выводы, что диаметр Плутона 2390 км, а Харона 1192 км, среднее расстояние между Плутоном и Хароном 19405 км, Харон обращается вокруг Плутона с периодом 6,387 суток. По уточненным данным массы Плутона и Харона относятся как 11:1. Из какого вещества, скорее всего, сложен Плутон?
- **6.** Среднее расстояние от Луны до Земли равно 384400 км, а от спутника Ио до планеты Юпитер 421600 км. У какого из спутников период обращения вокруг планеты больше? Ответ объясните и, если возможно, подтвердите расчетами.
- 7. Какое минимальное число геостационарных спутников ретрансляторов телевидения должно одновременно находиться на орбитах, чтобы в любой точке экваториального пояса Земли можно было бы принимать передачи спутникового телевидения, пользуясь антенной, установленной на балконе второго этажа?

- **8.** Покажите, что у Луны не может быть стационарного спутника и, следовательно, глобальное лунное телевидение необходимо осуществлять иными способами, чем спутниковое телевидение на Земле.
- 9. Определите массу Сатурна (в массах Земли) путем сравнения системы «Сатурн Титан» с системой «Земля Луна», если известно, что спутник Сатурна Титан отстоит от него на расстоянии 1220 тыс. км и обращается с периодом 16 суток. Для получения данных о Луне воспользуйтесь справочником. Массы Луны и Титана считайте пренебрежимо малыми по сравнению с массами планет.
- **10.** Звездная величина Веги 0,14. Во сколько раз эта звезда ярче Солнца, если расстояние до нее 8,1 парсек?
- **11.** Звездный период обращения Юпитера вокруг Солнца составляет 12 лет. Каково среднее расстояние от Юпитера до Солнца?

ТАБЛИЦЫ СПРАВОЧНЫХ ДАННЫХ, НЕОБХОДИМЫХ ДЛЯ РЕШЕНИЯ ЗАДАЧ

1. Основные физические и астрономические постоянные

Гравитационная постоянная $G = 6,672 \cdot 10^{-11} \text{ м}^3 \cdot \text{кг}^{-1} \cdot \text{c}^{-2}$

Скорость света в вакууме $c = 2,998 \cdot 10^8$ м/с

Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1}$

Универсальная газовая постоянная $R = 8.31 \text{ м}^2 \cdot \text{кг} \cdot \text{c}^{-2} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$

Постоянная Стефана-Больцмана $\sigma = 5.67 \cdot 10^{-8} \text{ кг} \cdot \text{c}^{-3} \cdot \text{K}^{-4}$

Масса протона $m_p = 1,67 \cdot 10^{-27}$ кг

Масса электрона $m_e = 9,11 \cdot 10^{-31} \text{ кг}$

Астрономическая единица 1 а.е. = $1,496 \cdot 10^{11}$ м

Парсек 1 пк = 206265 a.e. = $3,086 \cdot 10^{16}$ м

Постоянная Хаббла H = 72 (км/c)/Mпк

2. Данные о Солнце

Радиус R = 695000 км

Macca $M = 1.989 \cdot 10^{30}$ кг

Светимость $-3,88\cdot10^{26}$ Вт

Спектральный класс – G2

Видимая звездная величина — $26,78^m$

Абсолютная болометрическая звездная величина $-(+4,72^m)$

Показатель цвета $(B-V) - (+0.67^m)$

Эффективная температура T = 5800 K

Средний горизонтальный параллакс – 8,794"

Скорость движения в Галактике – 230 км/с

Интегральный поток энергии на расстоянии 3емли $- 1360 \text{ Bt/m}^2$

3. Данные о Земле

Эксцентриситет орбиты – 0,017

Тропический год – 365,24219 суток

Средняя орбитальная скорость – 29,8 км/с

Период вращения – 23 часа 56 минут 04 секунды

Наклон экватора к эклиптике на эпоху 2000 года – 23°26′21,45″

Экваториальный радиус – 6378,14 км

Полярный радиус – 6356,77 км

 $Macca - 5,974 \cdot 10^{24} \, кг$

Средняя плотность — $5,52 \, \text{г} \cdot \text{см}^{-3}$

Объемный состав атмосферы: N_2 (78 %), O_2 (21 %), Ar (~1 %).

4. Физические характеристики Солнца и планет

	Macca		Радиус		Плот-	Период	Наклон экватора		Вид.
Планета	КГ	массы Земли	КМ	радиусы Земли	ность, г·см ⁻³	вращения вокруг оси	к плос- кости орбиты, градусы	метр. аль- бедо	ная
Солнце	$1,989 \cdot 10^{30}$,	1,41	25,380 сут	7,25	1	-26,8
Меркурий	$3,302\cdot10^{23}$				5,42	58,646 сут	0,00	0,10	-0,1
Венера	$4,869 \cdot 10^{24}$	0,81476	6051,8	0,9488	5,20	243,019	177,36	0,65	-4,4
						сут**			
Земля		1,00000	6378,1	1,0000	5,52	23,934 час	23,45	0,37	_
Mapc		0,10745	3397,2	0,5326	3,93	24,623 час	25,19	0,15	-2,0
Юпитер	$1,899 \cdot 10^{27}$		71492	11,209	1,33	9,924 час	3,13	0,52	-2,7
Сатурн	$5,685\cdot10^{26}$	95,181	60268	9,4494	0,69	10,656 час	25,33	0,47	0,4
Уран	$8,683 \cdot 10^{25}$		25559	4,0073	1,32	17,24 час**	97,86	0,51	5,7
Нептун	$1,024\cdot10^{26}$	17,135	24746	3,8799	1,64	16,11 час	28,31	0,41	7,8

^{* –} для наибольшей элонгации внутренних планет и среднего противостояния внешних планет.

5. Характеристики орбит планет

	Большая	полуось		Наклон к		
Планета			Эксцен-	плоскости	Период	Синодический
	млн км	a.e.	триситет	эклиптики,	обращения	период, сут
				градусы		
Меркурий	57,9	0,3871	0,2056	7,004	87,97 сут	115,9
Венера	108,2	0,7233	0,0068	3,394	224,70 сут	583,9
Земля	149,6	1,0000	0,0167	0,000	365,26 сут	
Mapc	227,9	1,5237	0,0934	1,850	686,98 сут	780,0
Юпитер	778,3	5,2028	0,0483	1,308	11,862 лет	398,9
Сатурн	1429,4	9,5388	0,0560	2,488	29,458 лет	378,1
Уран	2871,0	19,1914	0,0461	0,774	84,01 лет	369,7
Нептун	4504,3	30,0611	0,0097	1,774	164,79 лет	367,5

^{** –} обратное вращение.

6. Характеристики некоторых спутников планет

о. ларактеристики некоторых спутников планет									
Масса кг	Радиус,	Плотность,	Радиус	Период об-	Геомет-	Видимая			
	KM	г/ с м ³	орбиты,	ращения,	рич.	звездная			
			KM	сут	альбедо	величина* т			
Земля									
$7,348\cdot10^{22}$	1738	3,34	384400	27,32166	0,12	-12,7			
		N	I apc						
$1,08\cdot10^{16}$	~10	2,0	9380	0,31910	0,06	11,3			
$1,8\cdot10^{15}$		1,7	23460	1,26244	0,07	12,4			
$8,94\cdot10^{22}$	1815	3,55	421800	1,769138	0,61	5,0			
$4.8 \cdot 10^{22}$	1569	3,01	671100	3,551181	0,64	5,3			
$1,48\cdot10^{23}$	2631	1,94	1070400	7,154553	0,42	4,6			
$1,08\cdot10^{23}$	2400	1,86	1882800	16,68902	0,20	5,7			
		Ca	турн						
$7,55\cdot10^{20}$	530	1,21	294660	1,887802	0,9	10,2			
	560	1,43	377400	2,736915	0,7	10,4			
$2,49\cdot10^{21}$	765	1,33	527040	4,517500	0,7	9,7			
$1,35\cdot10^{23}$	2575	1,88	1221850	15,94542	0,21	8,2			
$1,88\cdot10^{21}$	730	1,21	3560800	79,33018	0,2	~11,0			
Уран									
$6,33\cdot10^{19}$	235,8	1,15	129900	1,413479	0,27	16,3			
$1,7\cdot10^{21}$	578,9	1,56	190900	2,520379	0,34	14,2			
$1,27\cdot10^{21}$	584,7	1,52	266000	4,144177	0,18	14,8			
$3,49\cdot10^{21}$	788,9	1,70	436300	8,705872	0,27	13,7			
$3,03\cdot10^{21}$	761,4	1,64	583500	13,46324	0,24	13,9			
Нептун									
$2,14\cdot10^{22}$	1350	2,07	354800	5,87685	0,7	13,5			
		Масса кг Радиус, км $^{-}$ RM $^{-}$ RM $^{-}$ RM $^{-}$ RM $^{-}$ $^{-}$ RM $^{-}$ $^{-}$ RM $^{-}$ $^{-}$ RM $^{-}$ $^{-}$ R94·10 ²² $^{-}$ 1815 $^{-}$ R94·10 ²² $^{-}$ 1569 $^{-}$ 1,48·10 ²³ $^{-}$ 2631 $^{-}$ 1,08·10 ²³ $^{-}$ 2400 $^{-}$ $^{-}$ S30 $^{-}$ 1,05·10 ²¹ $^{-}$ 560 $^{-}$ 2,49·10 ²¹ $^{-}$ 765 $^{-}$ 1,35·10 ²³ $^{-}$ 2575 $^{-}$ 1,88·10 ²¹ $^{-}$ 730 $^{-}$ 88·10 ²¹ $^{-}$ 730 $^{-}$ 88·10 ²¹ $^{-}$ 730 $^{-}$ 3,49·10 ²¹ $^{-}$ 788,9 $^{-}$ 3,03·10 ²¹ $^{-}$ 761,4	Масса кг Радиус, км Плотность, г/см³ 7,348·10²² 1738 3,34 М 1,08·10¹6 10 2,0 1,8·10¹5 20 1,7 HO 8,94·10²² 1815 3,55 4,8·10²² 1569 3,01 1,48·10²³ 2400 1,86 Ca 7,55·10²⁰ 530 1,21 1,05·10²¹ 560 1,43 2,49·10²¹ 765 1,33 1,35·10²³ 2575 1,88 1,88·10²¹ 730 1,21 5,33·10²¹ 235,8 1,15 1,7·10²¹ 578,9 1,56 1,27·10²¹ 584,7 1,52 3,49·10²¹ 788,9 1,70 3,03·10²¹ 761,4 1,64	Масса кг кмРадиус, кмПлотность, г/см³Радиус орбиты, кмЗемля $7,348\cdot10^{22}$ 1738 $3,34$ 384400 Марс $1,08\cdot10^{16}$ $1,8\cdot10^{15}$ -10 -6 $2,0$ $1,7$ 9380 $1,8\cdot10^{15}$ В $94\cdot10^{22}$ $4,8\cdot10^{22}$ 1569 1569 $1,08\cdot10^{23}$ 2400 156 $1,08\cdot10^{23}$ 2400 156 $1,08\cdot10^{23}$ 2400 156 $1,109$ <td>Масса кг кмРадиус, кмПлотность, г/см³Радиус орбиты, кмПериод об- ращения, сутЗемля7,348·10^{22}17383,3438440027,32166Марс1,08·10^{16} 1,8·10^{15} 2 2 3 4,8·10^{22} 1569 1,08·10^{23} 1,08·10^{23} 24001,35 2400 1,36421800 1,769138 1,94 1070400 1,7,154553 1,86 1,82800 1,689021,769138 1,755·10^{20} 2 2,49·10^{21} 3 1,35·10^{23} 2575 1,33 1,35·10^{23} 2575 1,38 1,21 2,49·10^{21} 1,35·10^{23} 2575 1,88 1,21 258,9 1,21 1,21 258,9 1,56 1,33 1,21 25000 1,41 3560800 2,330181,15 2,9900 2,520379 1,27·10^{21} 584,7 1,56 1,58,9 1,70 1,36300 1,346324 1,70 1,70 2,30:10^{21} 3,49·10^{21} 3,49·10^{21} 3,49·10^{21} 788,9 1,70 3,30:10^{21} 761,4 1,64 1,64 1,64 1,64 583500Пептун 1,3430 1,346324 1,461<</br></td> <td>Масса кг $\stackrel{\text{Радиус}}{\text{км}}$ $\stackrel{\text{Плотность}}{\text{г/см}^3}$ $\stackrel{\text{Радиус}}{\text{орбиты}}$ $\stackrel{\text{Период об-ращения}}{\text{ращения}}$ $\stackrel{\text{Геометрицения}}{\text{рич.}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-рашения}}{\text{гут}}$ $\text{Период об-раше$</td>	Масса кг кмРадиус, кмПлотность, г/см³Радиус 	Масса кг $\stackrel{\text{Радиус}}{\text{км}}$ $\stackrel{\text{Плотность}}{\text{г/см}^3}$ $\stackrel{\text{Радиус}}{\text{орбиты}}$ $\stackrel{\text{Период об-ращения}}{\text{ращения}}$ $\stackrel{\text{Геометрицения}}{\text{рич.}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-ращения}}{\text{гут}}$ $\stackrel{\text{Период об-рашения}}{\text{гут}}$ $\text{Период об-раше$			

2.3. Примеры выполнения тестов

Пример 1.

Сходство между Большим Взрывом (процессом, в ходе которого образовалась и приобрела свои свойства наша Вселенная) и обычным взрывом артиллерийского снаряда состоит в том, что ...

- 1) расстояния между галактиками с течением времени увеличиваются, подобно тому, как разлетаются в разные стороны осколки взорвавшегося снаряда;
- 2) и осколки снаряда, и галактики разлетаются по направлению от определенной точки в пространстве центра взрыва;
- 3) движущей силой расширения и Вселенной, и продуктов взрыва снаряда является давление раскаленных газов;
- 4) расширение происходит только в ограниченной области (которую успела охватить ударная волна от взрыва), а за пределами этой области никакого расширения нет.

Решение:

Термин «Большой взрыв» несколько неудачен в том смысле, что он сильно дезориентирует широкую публику относительно сущности космологических процессов. Между взрывом снаряда и Большим взрывом нет практически ничего общего. Космологическое расширение охватывает всю бесконечную Вселенную, а не какую-то ограниченную область, как расширение газов при обычном взрыве. Движущей силой разбегания галактик служит изменение геометрических свойств пространства (точнее, пространства-времени), а не действие (давление) какой-то силы со стороны некоторого тела или среды. У расширения Вселенной нет центра – из любой ее точки наблюдатель увидит одну и ту же картину удаляющихся от него галактик. Лишь в том, что расстояния между галактиками с течением времени растут, можно провести аналогию с разлетающимися после взрыва осколками снаряда. И то, аналогия эта будет довольно условной, поскольку разлетающиеся осколки движутся относительно неизменного пространства, в то время как галактики, грубо говоря, уносит друг от друга растяжение разделяющего их пространства.

Пример 10.

На рисунке приведена карта реликтового излучения, построенная по результатам спутниковых измерений. Каждая точка карты соответствует определенному направлению небесной сферы, с которого принималось реликтовое излучение, цвет этой точки соот-

ветствует интенсивности излучения с этого направления.

Переход от одного цвета к другому соответствует изменению интенсивности примерно на 10^{-6} (то есть на 0,000001) от ее среднего значения по всем направлениям. Карта позволяет сделать вывод, что реликтовое излучение ...

Варианты ответов. Количество правильных ответов – 1

- 1) практически изотропно;
- 2) полностью изотропно;
- 3) сильно анизотропно;
- 4) имеет в основном зеленоватый цвет.

Решение:

Реликтовое излучение — это тепловое излучение молодой Вселенной. В его свойствах отпечаталось состояние Вселенной той далекой эпохи (13 миллиардов лет назад), когда она была горячей и непрозрачной (плотной). Поэтому свойства реликтового излучения так важны для космологов.

Условный цвет на карте не следует путать с реальным цветовым ощущением, которого реликтовое излучение не создает, ведь оно сосредоточено в радиодиапазоне электромагнитных волн.

Поскольку на карте присутствует не более десятка разных цветов, это означает, что интенсивность реликтового излучения, приходящего с разных направлений небесной сферы, различается не более, чем на десять миллионных долей от ее среднего значения. Таким образом, интенсивность реликтового излучения практически не зависит от направления или, в научной терминологии, реликтовое излучение практически изотропно. Это означает, что в эпоху отделения излучения от вещества, то есть 13 миллиардов лет назад, Вселенная тоже была практически изотропной, а те неоднородности, которые мы наблюдаем сейчас (галактики, их скопления и сверхскопления) сформировались позднее, в ходе эволюции Вселенной.

2.4. Тесты для выполнения на практическом занятии

1. Вселенная существует не вечно. Это подтверждается...

Варианты ответов. Количество правильных ответов – 1

- 1) справедливостью закона всемирного тяготения в широком диапазоне расстояний;
- 2) стационарностью решений уравнений общей теории относительности, применённых к Вселенной в целом;
- 3) наблюдательным фактом разбегания галактик со скоростью, пропорциональной расстоянию между ними;
- 4) преобладанием обычного вещества в общем составе материи Вселенной.
- **2.** Согласно современным космологическим представлениям, время существования Вселенной ...

Варианты ответов. Количество правильных ответов – 1

- 1)8-10 тыс. лет;
- 2) 13-15 млрд лет;
- 3)4,6 млрд лет;
- 4)80-100 млрд лет.
- **3.** В основе современных космологических представлений лежит вытекающее из общей теории относительности Эйнштейна положение о том, что...

- 1) геометрия пространства-времени Вселенной определяется распределением и движением материи в ней;
- 2) геометрические свойства нашего мира описываются евклидовой геометрией;

- 3) Вселенная имеет конечный объём, но не имеет краёв или иных границ;
- 4) геометрия пространства-времени Вселенной не зависит от распределения и движения масс в ней.
- **4.** Согласно расчетам А.А. Фридмана, если средняя плотность материи во Вселенной больше значения критической плотности, то...

Варианты ответов. Количество правильных ответов – 1

- 1) расширение Вселенной рано или поздно остановится и сменится сжатием;
 - 2) сжатие Вселенной будет продолжаться неограниченно;
 - 3) расширение Вселенной будет продолжаться неограниченно;
 - 4) Вселенная будет стационарна.
- **5.** Согласно модели Большого Взрыва, на раннем этапе эволюции Вселенная была...

Варианты ответов. Количество правильных ответов – 1

- 1) неплотной холодной и бесконечно больших размеров;
- 2) сверхплотной горячей и бесконечно малых размеров;
- 3) сверхплотной холодной и бесконечно больших размеров;
- 4) неплотной горячей и бесконечно больших размеров.
- **6.** Открытое в 70-е гг. реликтовое излучение является подтверждением...

Варианты ответов. Количество правильных ответов – 1

- 1) сжимающейся Вселенной;
- 2) стационарной Вселенной;
- 3) пульсирующей вселено;
- 4) теории Большого взрыва.
- **7.** Космологическая модель Большого взрыва наблюдательно подтверждается:

- 1) открытием Э.Хабблом коэффициента пропорциональности между скоростью разбегания галактик и расстоянием до них;
 - 2) изучением изотопного состава вещества метеоритов, Солнца и Земли;
 - 3) обнаружением реликтового излучения;
- 4) исследованием химического состава звезд путем анализа их спектров.

8. Укажите самую раннюю из приведенных стадий эволюции Вселенной:

Варианты ответов. Количество правильных ответов – 1

- 1) образование химических элементов тяжелее гелия;
- 2) отделение излучения от вещества;
- 3) возникновение барионов;
- 4) формирование звёзд первого поколения.
- **9.** Материя через $10^{-33}\,c$ после Большого взрыва существовала ...

Варианты ответов. Количество правильных ответов – 1

- 1) в виде вещества;
- 2) в виде излучения и частиц;
- 3) уже существовали планеты и звезды;
- 4) в виде галактик.
- 10. Согласно космологическим моделям, образование тяжёлых химических элементов (тяжелее железа) происходит в результате...

Варианты ответов. Количество правильных ответов – 1

- 1) жизнедеятельности живых организмов;
- 2) взрывов Сверхновых звёзд;
- 3) термоядерных реакций внутри стабильных звёзд;
- 4) взаимодействия элементарных частиц Вселенной.
- 11. Согласно космологическим моделям, распространение химических элементов по Вселенной происходит в результате...

Варианты ответов. Количество правильных ответов – 1

- 1) взрывов Сверхновых звезд;
- 2) жизнедеятельности живых организмов;
- 3) антропогенной деятельности человека;
- 4) естественной радиоактивности.
- **12.** Химический состав вещества во Вселенной, установленный с помощью спектрального анализа, следующий:

- 1) водород и гелий составляют более чем 99 %, все остальные элементы в незначительных количествах;
- 2) примерно поровну водорода, кислорода, гелия и в несколько раз меньше углерода и азота;
- 3) примерно поровну водорода, углерода, кислорода и в несколько раз меньше гелия и азота;
- 4) водород и кислород составляют более чем 99 %, все остальные элементы в незначительных количествах.

13. Основные структурные элементы крупномасштабной структуры Вселенной ...

Варианты ответов. Количество правильных ответов – 1

- 1) планеты;
- звезды;
- 3) туманности;
- 4) планетные системы;
- 5) галактики.
- **14.** Метагалактика наблюдаемая часть Вселенной представляется при наблюдениях...

Варианты ответов. Количество правильных ответов – 1

- 1) однородной и изотропной в масштабах меньше 200 Мпк и неоднородной в больших масштабах;
- 2) однородной и изотропной в очень больших масштабах и неоднородной в меньших масштабах;
 - 3) сильно неоднородной в любых масштабах;
 - 4) практически однородной во всех масштабах.
- **15**. Какой объект состоит из весьма массивной черной дыры с обращающимися вокруг нее голубыми и белыми гигантами числом до 1 млн.?

Варианты ответов. Количество правильных ответов – 1

- 1) шаровое скопление;
- 2) рассеянное скопление;
- 3) ядро галактики;
- 4) не наша галактика.

16. Галактики какого типа наиболее старые?

Варианты ответов. Количество правильных ответов – 1

- 1) спиральные;
- 2) эллиптические;
- 3) неправильные;
- 4) все одного возраста.
- **17.** На каком расстоянии находится галактика, если скорость ее удаления составляет 20000 км/c, H=75 км/(c·Mnk)?

- 1)26,67 Мпк;
- 2)266,7 пк;
- 3)26,67 пк;
- 4) 266,7 Мпк.

18. Наша Галактика относится к типу:

Варианты ответов. Количество правильных ответов – 1

- 1) неправильных;
- 2) спиральных;
- 3) эллиптических;
- 4) Сейфертовских.
- 19. Размер нашей Галактики (световых лет):

Варианты ответов. Количество правильных ответов – 1

- 1) 1000;
- 2) 10000;
- 3) 100000;
- 4) 300000.
- 20. Квазарами называют:

Варианты ответов. Количество правильных ответов – 1

- 1) различные звездные системы, подобные нашей Галактике;
- 2) ту часть Вселенной, которая доступна сейчас наблюдению;
- 3) исключительно активные объекты, являющиеся источниками мощного радиоизлучения и оптического излучения с очень большим красным смещением;
- 4) такие галактики, которые наряду со светом очень сильно излучают в радиодиапазоне.
 - 21. Каков примерно возраст Солнца и большинства звезд?

Варианты ответов. Количество правильных ответов – 1

- 1) 5 млрд лет;
- 2) 5 млн лет;
- 3) несколько млн лет;
- 4) несколько млрд лет.
- 22. В какой части нашей Галактики расположено Солнце?

Варианты ответов. Количество правильных ответов – 1

- в центре;
- 2) в ядре;
- 3) в плоскости ближе к краю;
- 4) плоскости ближе к центру.
- **23.** В отличие от гипотез XVIII XIX веков, современные представления о происхождении Солнца и Солнечной системы позволяют объяснить тот факт, что...

Варианты ответов. Количество правильных ответов – 1

1) масса планеты тем больше, чем дальше она от Солнца;

- 2) при массе более 99 % от всей массы Солнечной системы. Солнце обладает менее чем 1 % всего её вращательного движения;
- 3) большинство планет и их спутников вращаются в одном и том же направлении прямом;
 - 4) орбиты всех планет лежат практически в одной плоскости.
- **24.** Основной сценарий образования небесных тел заключается в том, что планеты, звёзды и галактики ...

- 1) сжимаются из рассеянного вещества его вихревыми движениями;
- 2) возникают при распаде более крупных небесных тел;
- 3) собираются из рассеянного вещества силами тяготения;
- 4) представляют собой газопылевые облака, спрессованные в ходе общего сжатия Вселенной.
 - 25. Достаточно точные данные о возрасте Земли получают ...

Варианты ответов. Количество правильных ответов – 1

- 1) в результате анализа вулканических газов;
- 2) на основе интерпретации данных сейсмической разведки;
- 3) при анализе радиоактивных превращений элементов Земли и метеоритов;
 - 4) на основе длительности эволюции живых организмов.
- **26.** Укажите верное утверждение, касающееся состава первичной атмосферы Земли в абиогенный период возникновения жизни.

Варианты ответов. Количество правильных ответов – 1

- 1) в первичной атмосфере присутствовал газообразный кислород;
- 2) первичная атмосфера состояла из водяных паров, углекислого газа и кислорода;
 - 3) в первичной атмосфере отсутствовал газообразный кислород;
 - 4) первичная атмосфера имела озоновый слой.
- **27.** В состав первичной атмосферы Земли входили пары воды и такие газы, как...

- 2) CO, NH₃, O₂, N₂O;
- 3) CO₂, O₂, H₂S, NH₃, CH₄, H₂;
- 4) NO, CO₂, CO, O₂;
- 5) CO₂, CO, H₂S, NH₃, CH₄.

28. Укажите правильную последовательность расположения геосферных оболочек в направлении от центра Земли:

Варианты ответов. Количество правильных ответов – 1

- 1) внешнее ядро, внутреннее ядро, мантия, земная кора;
- 2) мантия, внутреннее ядро, земная кора, внешнее ядро;
- 3) внутреннее ядро, внешнее ядро, земная кора, мантия;
- 4) внутреннее ядро, внешнее ядро, мантия, земная кора.
- 29. Тектонические движения земной коры происходят под влиянием...

Варианты ответов. Количество правильных ответов – 1

- 1) экзогенных процессов с участием энергии Солнца и при взаимодействии атмосферы, гидросферы, биосферы с литосферой;
- 2) эндогенных сил, вызывающих перемещение вещества литосферы и изменяющих условия залегания горных пород;
 - 3) турбулентного движения воздуха в нижних слоях атмосферы;
 - 4) процессов растворения части горных пород подземными водами.
 - 30. Антропный принцип заключается в том, что:

- 1) факт существования человека ограничивает возможные физические свойства Вселенной;
- 2) существование человек непосредственно влияет на физические свойства Вселенной;
- 3) физические свойства Вселенной изначально таковы, чтобы обеспечить возникновение живых и разумных существ;
- 4) Бог устроил Вселенную так, чтобы человеку было удобно в ней жить.

Практическое занятие №7

Панорама современного естествознания. Особенности биологического уровня организации материи. Происхождение жизни.

Эволюция живых систем

1. Семинар

Вопросы для обсуждения:

- 1) Особенности биологического уровня организации материи:
- иерархическая организация уровней живого;
- признаки и свойства живых систем;
- химический состав живого; особенности атома углерода, биополимеров, воды;
 - хиральность молекул живого;
 - целостность живых систем;
- управление и регулирование живых систем; уровни регулирования в организме;
- составление последовательности иерархии живой материи; анализ свойств, признаков живого, особенностей химического состава на конкретных примерах (выполнить практические задания)
 - 2) Концепции происхождения жизни на Земле.
 - 3) Принципы воспроизводства живых систем:
- важнейшие биополимеры белки, липиды, углеводы, нуклеиновые кислоты, их функции;
 - аминокислоты и нуклеотиды как мономеры биополимеров;
- принцип комплементарности, комплементарные пары азотистых оснований;
 - строение ДНК и РНК; их роль в синтезе белка;
 - процессы редупликации, транскрипции, трансляции;
 - генетический код, его свойства;
- нахождение комплементарных пар нуклеотидов; числа нуклеотидов, шифрующих конкретный белок (*выполнить практические задания*).
 - 4) Теории эволюции органического мира:
 - начальные этапы биологической эволюции;
 - эволюционная теория Ч. Дарвина;
 - синтетическая теория эволюции;
 - эволюционная картина мира, глобальный эволюционизм.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Брызгалина, Е. В. Концепции современного естествознания [Текст] / Е. В. Брызгалина. М:. Проспект, 2015. 496 с.
- 5. Романов, Л.А. Концепции современного естествознания. Практикум. [Текст] / Л.А. Романов. М.: Вузовский учебник: НИЦ ИНФРА-М, 2015. 128 с.
- 6. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.

2. Практические задания (задачи, тесты)

2.1. Методические указания к решению задач по теме «Особенности биологического уровня организации материи»

Среди бесчисленного разнообразия химических веществ, из которых построены живые организмы, особое положение занимают *нуклеиновые кислоты*. Как и любые полимеры, они построены из большого числа небольших органических молекул, – мономеров, называемых нуклеотидами. В отличие от всех других полимеров (кроме белков) нуклеиновые кислоты построены из нескольких разнотипных мономеров, отличающихся друг от друга одним из компонентов. Число и последовательность расположения мономеров в полимерной цепи имеют глубокий биологический смысл. В отдельных случаях замена лишь одного из множества мономеров приводит к серьезным биологическим последствиям. В то же время в некоторых случаях даже большое число замен не лишает конечный продукт нуклеиновой кислоты (белок) его основной функции.

Молекула ДНК построена из двух спиралевидных полинуклеотидных цепей, которые объединены в результате закручивания одной вокруг другой по общей оси (двойная спираль). Цепи в молекуле не идентичны, но комплементарны (взаимодополняемы) и удерживаются слабыми водородными связями между азотистыми основаниями, причем это спаривание имеет специфический характер.

Аденин одной цепи связывается с *тимином* другой цепи двумя водородными связями; *гуанин* одной соединяется с *цитозином* другой цепи тремя водородными связями.

Рибонуклеиновая кислота (РНК) характеризуется структурой, подобной ДНК, однако она состоит только из одной цепочки и сахаром является рибоза (пентоза), в молекуле РНК нуклеотид тимин заменен на нуклеотид урацил.

В ядре клетки молекулы ДНК образуют чрезвычайно компактные структуры в комплексе с белками-гистонами, ответственными за «упаковку» наследственного материала. В определенные периоды жизнедеятельности клеток ДНК-гистонные комплексы доступны для наблюдения в световой микроскоп в виде хромосом.

Кариотипом называется диплоидный набор хромосом (2п), определяемый их числом, величиной и формой. Такой набор хромосом характерен для соматических клеток (клетки тела) и сохраняется при их делении – митозе.

Геномом называется гаплоидный, т. е. одинарный набор хромосом (п), характерный для половых клеток или гамет. Редукция (уменьшение) хромосомного набора осуществляется в результате специального деления — мейоза в процессе образования гамет. При оплодотворении, т. е. слиянии ядер гамет, восстанавливается свойственный виду диплоидный набор наследственной информации и начинается развитие нового индивида.

2.2. Практические задания

Задание 1. Изобразите схематически фрагмент двухцепочечной молекулы ДНК, включающей разные нуклеотиды: A и Γ (пурины); T и U (пиримидины).

ТТЦГААГТЦЦАГГТЦААЦТТАГГАТТТГЦААГ

Выведите закономерности, известные в качестве *правила А. Чаргаффа* (общее количество аденина и гуанина в молекуле ДНК равно количеству цитозина и тимина.

Для этого:

- 1) определите сумму пуринов (А и Γ) и пиримидинов (Т и Ц);
- 2) найдите соотношение А+Г / Т+Ц
- 3) определите соотношение между содержанием А и Т; Г и Ц;
- 4) найдите сумму Γ и T, A и \coprod и соотношение между первыми и вторыми нуклеотидами.

Задание 2. Познакомьтесь с главным свойством живого вещества – *способностью к воспроизводству специфической структуры*. Перед каждым клеточным делением количество хромосом, *т. е. число молекул ДНК*,

удваивается. Этот процесс называется *репликацией* и заключается в раскручивании двойной спирали на отдельные цепи, каждая из которых используется как матрица (образец). Из свободных нуклеотидов клеточного ядра достраиваются недостающие цепи с соблюдением *принципа комплиментарности*.

Используя принцип комплиментарности, постройте участок реплицированной молекулы ДНК:

$TT \coprod \Gamma A A A \Gamma \coprod \Gamma A \Gamma \Gamma \coprod T T T A \coprod \Gamma$ $A A \Gamma \coprod T T T \coprod \Gamma \coprod \Gamma \coprod \Box \coprod \Gamma A A A T \Gamma \coprod$

Задание 3. Познакомьтесь с первым этапом биосинтеза белка — считыванием, переписыванием или *транскрипцией*. Транскрипция — переписывание информации с молекул ДНК на РНК. Этот процесс происходит в ядре клетки и заключается в синтезе информационной (матричной) РНК на участке цепи ДНК с соблюдением принципа комплементарности:

Фрагмент ДНК, с которого считывается информация, — ген — функционально неделимая единица наследственного материала, кодирующая первичную структуру белка, транспортной или рибосомальной РНК. Как и при репликации, в случае транскрипции реализуется принцип матричного синтеза.

Задание 4. Познакомьтесь со вторым этапом биосинтеза белка — *трансляцией*, т.е. реализацией генетической информации в полипептидах на рибосомах. Последовательность нуклеотидов в молекуле нуклеиновой кислоты, отражающая чередование аминокислот в белке, называется *генетическим кодом*.

\mathbf{T}	•	
I	енетический	КОЛ

Аминокислота	Кодоны (триплеты) нуклеотидов и-РНК		
1	2		
Метионин (Мет)	ΑУΓ		
Триптофан(Три)	УГГ		
Цистеин (Цис)	УГЦ, УГУ		
Аспарагиновая кислота (Асп)	ГАЦ, ГАУ		
Глутаминовая кислота (Глу)	ΓΑΑ, ΓΑΓ		
Фенилаланин (Фен)	УУЦ,УУУ		
Гистидин (Гис)	ЦАЦ, ЦАУ		

1	2
Лизин (Лиз)	AAA, AAΓ
Аспарагин (Асн)	ААЦ, ААУ
Глутамин (Глн)	ЦАА, ЦАГ
Тирозин (Тир)	УАЦ, УАУ
Изолейцин (Иле)	АУА, АУЦ, АУУ
Глицин (Гли)	ГГА, ГГГ, ГГЦ, ГГУ
Пролин (Про)	ЦЦА, ЦЦЦ, ЦЦГ, ЦЦУ
Треонин (Тре)	АЦА, АЦЦ, АЦГ, АЦУ
Валин (Вал)	ГУА, ГУЦ, ГУГ, ГУУ
Алании (Ала)	ГЦА, ГЦЦ, ГЦГ, ГЦУ
Лейцин (Лей)	УУА, УУГ, ЦУА, ЦУЦ, ЦУГ, ЦУУ
Аргинин (Арг)	АГА, АГГ, ЦГА, ЦГЦ, ЦГГ, ЦГУ
Серии (Сер)	АГЦ, АГУ, УЦА, УЦЦ, УЦГ, УЦУ

Свойства кода:

- 1) *триплетность* для кодирования одной аминокислоты всегда используется три нуклеотида;
- 2) *вырожденность* (*избыточность*) для кодирования одной аминокислоты (кроме метионина и триптофана) используется несколько триплетов, до шести включительно;
- 3) универсальность генетический код един для всех живых организмов планеты. Независимо от видовой принадлежности конкретные аминокислоты кодируются одинаковыми триплетами. Универсальность кода важнейшее доказательство единства развития жизни на Земле от общего предка;
- 4) *непрерывность* между триплетами нет знаков препинания, т. е. информация считывается непрерывно;
- 5) *дискретность* один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов;
- 6) специфичность определенный кодон соответствует только одной аминокислоте.

Как и в случаях репликации и транскрипции, при трансляции реализуется матричный принцип. Аминокислоты подносятся к рибосомам небольшими молекулами транспортной РНК. Кодон АУГ, соответствующий метионину, одновременно служит и инициатором – сигналом к началу синтеза. Этим кодоном начинается любая и-РНК, причем все последующие триплеты АУГ просто кодируют метионин. Кодонов, не кодирующих аминокислоты, известно три: УАА, УАГ, УГА. Эти сочетания нуклеотидов называют *«стопкодонами»* или *терминаторами*, т. е. сигналами к окончанию синтеза.

2.3. Задачи для решения на практическом занятии

- **1.** Участок одной нити ДНК имеет следующую структуру: ТАЦГАТЦ-ГАЦТАЦГААТТ... Постройте участок информационной РНК, транскрибируемой на этой молекуле ДНК, и укажите структуру соответствующей части молекулы белка, если выпадет второй нуклеотид?
- **2.** Участок молекулы ДНК (ген) характеизуется следующей последовательностью нуклеотидов:

ТАЦ ААЦ ТТА ГАЦ ЦГГ ААТ ТАГ АГЦ АЦТ...

Определите последовательность аминокислот в белке, кодируемом данным геном.

- **3.** Единичная молекула ДНК в хромосоме бактерии кишечной палочки (молекулярная масса 2800000000 дальтон) содержит около 4,5 млн. мононуклеотидных единиц; длина каждой из них составляет 3,4 Å. Определите общую длину этой молекулы ДНК и сравните ее с размером бактерии (длина клетки 10^{-6} м).
- **4.** В медицинской практике при диагностике многих болезней широко используют анализ биологических жидкостей. Так, например, при нарушении образования костной ткани (цистенурия, синдром Фанкони) у больного с мочой выделяются аминокислоты, которым соответствуют следующие триплеты и-РНК: ЦУУ ГУУ ЦУГ ГУГ АУА. У здорового человека в моче обнаруживаются аланин, серии, глутаминовая кислота и глицин. Наличие каких аминокислот характерно для больных людей?

2.4. Примеры выполнения тестов

Тема: Особенности биологического уровня организации материи.

Пример 1.

Установите соответствие между свойством воды и его значением для жизни на Земле:

- 1) высокое поверхностное натяжение;
- 2) аномальная плотность льда;
- 3) высокая теплоемкость;
- а) возможность движения водных растворов от корней к стеблям и листьям;
- б) сохранение жизни живых существ, населяющих замерзающие водоемы;
- в) участие воды гидросферы в регулировании климата на нашей планете:
 - г) способность растворять твердые, жидкие, газообразные вещества. Решение:

Высокое поверхностное натяжение обеспечивает возможность движения водных растворов от корней к стеблям и листьям. Аномальная плот-

ность в твердом состоянии имеет большое значение для сохранения жизни живых существ, населяющих замерзающие водоемы. Высокая теплоемкость воды гидросферы способствует регулированию климата на нашей планете.

Тема: Происхождение жизни (эволюция и развитие живых систем).

Пример 2.

Установите соответствие между экспериментом, проведенным по верификации концепции биохимической эволюции, объясняющей возникновение жизни, и гипотезой, которую опыт проверял:

- 1) весной 2009 года группа британских ученых во главе с Дж. Сазерлендом синтезировала из низкомолекулярных веществ (цианидов, ацетилена, формальдегида и фосфатов) фрагмент нуклеотида;
- 2) в опытах американского ученого Л. Орджела при пропускании искрового электрического разряда через смесь нуклеотидов были получены нуклеиновые кислоты;
- 3) в экспериментах А.И. Опарина и С. Фокса при смешивании в водной среде биополимеров были получены их комплексы, обладающие зачатками свойств современных клеток.
- а) гипотеза самопроизвольного синтеза мономеров нуклеиновых кислот из достаточно простых исходных веществ, которые могли быть в условиях ранней Земли;
- б) гипотеза о возможности синтеза в условиях ранней Земли биополимеров из низкомолекулярных соединений;
- в) идея о самопроизвольном образовании коацерватов в условиях ранней Земли;
- г) гипотеза о саморепликации нуклеиновых кислот в условиях ранней Земли.

Решение:

Опыт по превращению низкомолекулярных веществ (цианидов, ацетилена, формальдегида и фосфатов) во фрагмент нуклеотида подтверждает гипотезу самопроизвольного синтеза мономеров нуклеиновых кислот из достаточно простых исходных веществ, которые могли быть в условиях ранней Земли.

Опыт, в котором при пропускании электрического разряда через смесь нуклеотидов были получены нуклеиновые кислоты, доказывает возможность синтеза биополимеров из низкомолекулярных соединений в условиях ранней Земли.

Эксперимент, в котором при смешивании в водной среде биополимеров были получены их комплексы, обладающие зачатками свойств совре-

менных клеток, подтверждает идею о возможности самопроизвольного образования коацерватов.

2.5. Тесты для выполнения на практическом занятии

1. Жизнь — это:

Варианты ответов. Количество правильных ответов – 1

- 1) особая форма существования белковых тел;
- 2) особая форма движения материи;
- 3) форма существования систем, способных к самоорганизации, саморегуляции и самовоспроизведению;
 - 4) все то, что питается и размножается.
- **2.** Признаки, которые ярче выражены у живых организмов, чем у неживых объектов:

Варианты ответов. Количество правильных ответов – 1

- а) способность к самовоспроизведению, размножению;
- б) обмен веществ и превращение энергии;
- в) изменение размеров тела;
- г) передвижение в пространстве.
- 1) а и б; 2) в и г; 3) а и г; 4) б и в.
- 3. Установите соответствие между характерной чертой живых систем и одним из проявлений этой черты:
 - 1) иерархичность;
 - 2) открытость;
 - 3) целостность.
- а) любая составная часть организма имеет специальное назначение и выполняет строго определенную функцию;
- б) поведение и свойства живой системы определяются структурой системы, а не только свойствами отдельных ее элементов;
 - в) любая живая система состоит из множества элементов (подсистем);
 - г) протекание процессов метаболизма в клетке.
- **4.** Укажите правильную последовательность в структурной иерархии биологического уровня организации материи (от высшего к низшему):

- 1) биосфера;
- 2) биогеоценоз;
- 3) популяция;
- 4) клетка.

- **5.** Установите соответствие между рядом уровней организации живой материи и типом иерархии в нем:
 - 1) ткань \Rightarrow клетка \Rightarrow биополимер;
 - 2) ген \Rightarrow молекула ДНК \Rightarrow клетка;
 - 3) молекула ДНК \Rightarrow клетка \Rightarrow ген;
- а) из приведенных уровней живого нельзя составить иерархическую лестницу;
 - б) иерархия от нижестоящего к вышестоящему уровню;
 - в) иерархия от вышестоящего к нижестоящему уровню;
 - г) нет строгой иерархии в приведенной последовательности.
- **6.** Установите соответствие между свойством воды и его значением для жизни на Земле:
 - 1) высокая теплоёмкость;
- 2) аномальная плотность воды в твердом состоянии (плотность льда ниже плотности жидкой воды);
 - 3) высокая растворяющая способность.
 - а) сохранение различных форм жизни в водоёмах;
 - б) условие для протекания процессов жизнедеятельности;
 - в) регулятор температуры на земном шаре;
 - г) возможность существования жизни на поверхности воды.
- 7. Установите соответствие между особенностями атома углерода и обусловленными ими свойствами органических молекул:
- 1) способность атомов углерода связываться друг с другом различными способами;
- 2) образование лабильных относительно непрочных связей с кислородом, азотом, серой, фосфором;
 - 3) высокая химическая активность.
 - а) способность образовывать высокомолекулярные соединения;
- б) высокая прочность связей в органических молекулах, приводящая к малой химической активности;
- в) образование надмолекулярных структур, которые определяют функциональную активность биополимеров и многообразие органических молекул.
- 8. Возникновение жизни на Земле и ее биосферы является одной из основных проблем современного естествознания. Гипотеза, заявляющая,

что проблемы зарождения жизни вообще не существует, что жизнь никогда не возникала, а существовала всегда, называется

Варианты ответов. Количество правильных ответов – 1

- 1) гипотезой стационарного состояния;
- 2) гипотезой самопроизвольного зарождения жизни;
- 3) гипотезой биохимической эволюции;
- 4) креационистской гипотезой.
- 9. Возникновение жизни на Земле является одной из основных проблем естествознания. Гипотеза панспермии предполагает, что...

Варианты ответов. Количество правильных ответов – 1

- 1) земная жизнь имеет космическое происхождение;
- 2) проблемы зарождения жизни вообще не существует;
- 3) жизнь возникла в результате процесса биохимической эволюции;
- 4) жизнь есть результат божественного творения.
- **10.** Гипотеза, считающая, что происхождение мира, жизни и человека есть результат божественного творения, отрицающая изменение видов и их исторического развития называется...

Варианты ответов. Количество правильных ответов – 1

- 1) креационизм;
- 2) панспермия;
- 3) гипотеза стационарного состояния;
- 4) теория биохимической эволюции.
- **11.** Возникновение жизни на Земле и её биосферы одна из основных проблем современного естествознания. Согласно гипотезе биохимической эволюции А.И. Опарина ...

Варианты ответов. Количество правильных ответов – 1

- 1) зарождение жизни на Земле это результат абиогенного синтеза живой материи из неживой;
 - 2) жизнь никогда не возникала, а существовала вечно;
 - 3) жизнь имеет космическое происхождение;
 - 4) жизнь есть результат божественного творения.
- **12.** Экспериментальным подтверждением гипотезы биохимической эволюции служат опыты C. Миллера. Он разместил на куске вулканической лавы сухую смесь аминокислот, нагрел до $130\,^{0}C$ и получил белки. Так была продемонстрирована в условиях ранней Земли возможность ...

- 1) самопроизвольного зарождения жизни из неживого;
- 2) превращения мономеров в биополимеры

- 3) образования коацерватов, имеющих некоторые свойства живой клетки;
 - 4) абиогенного синтеза органических мономеров.
- **13.** В процессе возникновения жизни на Земле различают несколько основных этапов. Укажите их последовательность в процессе эволюции:
- а) концентрирование органических соединений и образование биополимеров;
- б) абиогенный синтез низкомолекулярных органических соединений из неорганических;
 - в) возникновение фотосинтеза;
 - г) возникновение самовоспроизводящихся молекул.
 - 1) б-а-г-в; 2) б-в-г-а; 3) в-г-а-б; 4) г-а-б-в.
 - 14. Установите соответствие между понятием и его определением:
 - 1) гетеротрофы;
 - 2) анаэробы;
 - 3) эукариоты.
- а) комплексы биополимеров, отделенные от воды слоем, имитирующим мембрану;
 - б) организмы, обладающие оформленным клеточным ядром;
 - в) организмы, питающиеся готовыми органическими веществами;
 - г) организмы, способные жить в отсутствии атмосферного кислорода.
- **15.** Методологический подход в вопросе происхождения жизни, основанный на убеждении в первичности макромолекулярной системы со свойствами первичного генетического кода называется...

- 1) генобиоз;
- 2) голобиоз;
- 3) симбиоз;
- 4) коэволюция.
- **16.** Гипотеза генобиоза (методологический подход в вопросе происхождения жизни) основана на идее...

- 1) первичности жизнеспособных систем, способных к автокатализу;
- 2) одновременного появления нуклеиновых кислот и ферментных белков;
- 3) первичности молекулярной системы со свойствами генетического кода;

- 4) первичности структур клеточного типа, способных к обмену веществ при участии ферментных белков.
 - 17. Гипотеза голобиоза основана на идее:

- 1) первичности молекулы ДНК;
- 2) первичности молекулы РНК;
- 3) первичности молекулярной системы со свойствами генетического кода;
- 4) первичности структур клеточного тела, способных к обмену веществ при участии ферментных белков.
- **18.** Укажите последовательность возникновения важнейших ароморфозов в истории жизни на Земле:

Варианты ответов. Количество правильных ответов – 1

- 1) многоклеточные;
- 2) эукариоты;
- 3) прокариоты.
- **19.** Укажите последовательность эволюционного развития животного мира от низших форм к высшим..

Варианты ответов. Количество правильных ответов – 1

- 1) рептилии;
- 2) амфибии;
- 3) птицы.
- **20.** Одним из этапов эволюции живого стало появление организмов, способных синтезировать питательные вещества из неорганических соединений. Эти организмы называются ...

Варианты ответов. Количество правильных ответов – 1

- 1) автотрофы;
- 2) гетеротрофы;
- 3) хемотрофы;
- 4) сапрофиты.
- **21**. Организмы, питающиеся готовыми органическими веществами, называются...

- 1) гетеротрофами;
- 2) автотрофами;
- 3) паразитами;
- 4) сапрофитами.

- **22.** Установите соответствие достижений естествознания 19 в. и их авторов:
- А. Отказ от идеи вечности и неизменности биологических видов и установление основного фактора эволюционного процесса.
 - Б. Идеи катастрофизма и принцип неизменности органических видов.
 - В. Концепция униформизма и принцип актуализма.
- Γ . Эволюционная теория происхождения биологических видов путем естественного отбора.
 - Д. Теория химического строения вещества.
 - 1) Ламарк Ж.;
 - 2) Дарвин Ч.;
 - 3) Бутлеров А.;
 - 4) Лайель Ч.;
 - 5) Кювье Ж.
- 23. Элементарной эволюционной единицей реально существующей в природе, является...

- 1) вид;
- 2) популяция;
- 3) порода животных;
- 4) особь.
- **24.** Каждая популяция характеризуется определенной совокупностью генов, которую называют ...

Варианты ответов. Количество правильных ответов – 1

- 1) генотип;
- 2) гемозигота;
- 3) генофонд;
- 4) фенотип.
- **25.** Существует несколько движущих сил (факторов) эволюции органического мира, которые Ч. Дарвин считал основными:

- 1) наследственная изменчивость, изоляция, естественный отбор;
- 2) наследственная изменчивость, популяционные волны, естественный отбор;
- 3) естественный отбор, борьба за существование, наследственная изменчивость;
- 4) естественный отбор, мутационный процесс, борьба за существование.

26. Естественный отбор действует на уровне...

Варианты ответов. Количество правильных ответов – 1

- 1) кариотипа;
- 2) фенотипа (организма);
- 3) отдельного признака;
- 4) отдельного гена.
- **27.** Наследственной изменчивости соответствуют следующие положения ...

Варианты ответов. Количество правильных ответов – 1

- 1) носит обратимый характер;
- 2) появление новых признаков определяется изменением генотип;
- 3) носит приспособительный характер;
- 4) является материалом для естественного отбора.
- **28.** Эволюционный фактор, являющийся основным в формировании резерва наследственной изменчивости среди особей популяции или вида, это...

Варианты ответов. Количество правильных ответов – 1

- 1) мутационный процесс;
- 2) популяционные волны;
- 3) изоляция;
- 4) миграция особей.
- **29.** Модификационная изменчивость ...

Варианты ответов. Количество правильных ответов – 1

- 1) является групповой;
- 2) не наследуется;
- 3) необратима;
- 4) связана с изменением генотипа.
- **30.** Антидарвиновская концепция развития живой природы, согласно которой эволюция совершается под действием внутренних, заранее определенных причин называется:

- 1) номогенез;
- 2) неоламаркизм;
- 3) витализм;
- 4) социал-дарвинизм.

31. Сальтационизм, в отличие от дарвинизма, исходит из того, что ...

Варианты ответов. Количество правильных ответов – 1

- 1) эволюционный материал незначительные наследственные изменения;
- 2) эволюция происходит непрерывно постепенно, путем естественного отбора;
 - 3) эволюция происходит скачкообразно;
 - 4) новые виды образуются вне действия естественного отбора.
- **32.** Синтетическая теория эволюции (СТЭ) возникла как синтез теории эволюции Ч. Дарвина и ...

Варианты ответов. Количество правильных ответов – 1

- 1) статистики;
- 2) генетики;
- 3) физиологии;
- 4) тектологии.
- **33.** Согласно синтетической теории эволюции элементарным эволюционным фактором, поставщиком элементарного эволюционного материала является ...

Варианты ответов. Количество правильных ответов – 1

- 1) мутационный процесс;
- изоляция;
- 3) популяционные волны;
- 4) естественный отбор.
- **34**. Синтетическая теория эволюции структурно состоит из теорий микро- и макроэволюций. Теория микроэволюции изучает ...

Варианты ответов. Количество правильных ответов – 1

- 1) происхождение человека;
- 2) эволюционные изменения, происходящие в генофондах популяций за сравнительно небольшой период времени;
 - 3) эволюцию семейств;
 - 4) возникновение жизни на Земле.
- **35.** Фактор микроэволюции, который заключается в периодических изменениях количества особей в популяции под воздействием внешних условий:

- 1) мутационный процесс;
- 2) миграция;
- 3) популяционные волны;
- 4) изоляция.

36. Синтетическая теория эволюции структурно состоит из теорий микро- и макроэволюций. Теория макроэволюции изучает ...

Варианты ответов. Количество правильных ответов – 1

- 1) наследственность и изменчивость;
- 2) проблемы взаимоотношений человека и окружающей среды;
- 3) эволюционные преобразования за длительный исторический период, основные направления развития жизни на Земле в целом;
 - 4) эволюцию популяций.
 - 37. Итогом макроэволюции является ...

Варианты ответов. Количество правильных ответов – 1

- 1) образование новых видов;
- 2) уменьшение численности особей вида;
- 3) изменение генофонда популяций;
- 4) возникновение адаптаций общего значения.
- **38.** Форма естественного отбора, благодаря которой число глаз и количество пальцев на конечностях позвоночных остается в течение длительного времени постоянным, это:

Варианты ответов. Количество правильных ответов – 1

- 1) стабилизирующим;
- 2) ценотический;
- 3) дизруптивный;
- 4) движущий.
- **39.** Форма естественного отбора, при которой в популяции становится преобладающим оптимальный для конкретных условий фенотип, называется...

Варианты ответов. Количество правильных ответов – 1

- 1) дизруптивный отбор;
- 2) стабилизирующий отбор;
- 3) дестабилизирующий отбор;
- 4) движущий (направленный) отбор.
- **40.** Форма естественного отбора, которая расчленяет ранее единую популяцию на две и более разные популяции и ведет к образованию новых видов, называется ...

- 1) движущий (направленный) отбор;
- 2) стабилизирующий отбор;
- 3) дизруптивный отбор;
- 4) искусственный отбор.

41. Признаки, характерные для молекулы ДНК: а) состоит из одной полинуклеотидной цепи; б) состоит из двух полинуклеотидных цепей; в) имеет нуклеотиды А, У, Ц, Г; г) имеет нуклеотиды А, Т, Г, Ц; д) является хранителем наследственной информации; е) передает наследственную информацию из ядра к рибосоме. 2) a, б, в; 3) г, д, е; 4) a, B, e. 1) б, г, д; 42. Число нуклеотидов, входящих в состав одного кодона ДНК или и-РНК, который кодирует одну аминокислоту, равно ... Варианты ответов. Количество правильных ответов – 1 1)1; 2)4; 3)3; 4)2. 43. Одна из цепей ДНК имеет последовательность нуклеотидов: ТЦАГГТ. Исходя из принципа комплементарности, последовательность нуклеотидов в другой цепи ДНК следующая: Варианты ответов. Количество правильных ответов – 1 1) АГТЦЦА; 2) ГАТАЦЦ; 3) ЦАТГГА; 4) ААГЦЦТ. 44. Белок состоит из 180 аминокислот. Число нуклеотидов одной полинуклеотидной цепи ДНК, цифрующих последовательность аминокислот в этом белке равно: Варианты ответов. Количество правильных ответов – 1 1) 180; 2)90; 3)540; 4)60. 45. Последовательность, в которой образуются структуры молекулы

белка в процессе его биосинтеза: Варианты ответов. Количество правильных ответов – 1

- а) полипептидная цепь;
- б) глобула;
- в) полипептидная спираль;
- г) четвертичная структура.
- 1) г-б-в-а; 2) б-в-а-г; 3) в-а-г-б; 4) а-в-б-г.

Практическое занятие №8

Генетика и эволюция

1. Семинар

Вопросы для обсуждения:

- 1) Основы генетики:
- история возникновения генетики;
- основные понятия генетики.
- 2) Закономерности наследственности:
- хромосомная теория наследственности;
- изменчивость.
- 3) Генетическая и клеточная инженерия:
- научные направления в разработке способов лечения наследственных болезней;
 - основное отличие генных и хромосомных болезней.

Основная литература:

- 1. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 2. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.

Дополнительная и рекомендуемая литература:

- 3. Очкина Н.А. Концепции современного естествознания. Естественнонаучная картина мира [Текст]: учеб. пособие / Н.А. Очкина; под общ. ред. д-ра техн. наук, проф. Г.И. Грейсуха. Пенза: ПГУАС, 2016.
- 4. Рузавин, Г.И. Концепции современного естествознания [Текст] / Г.И. Рузавин. М.: Проспект, 2015. 245 с.
- 5. Брызгалина, Е. В. Концепции современного естествознания [Текст] / Е. В. Брызгалина. М:. Проспект, 2015. 496 с.
- 6. Тулинов, В.Ф. Концепции современного естествознания [Текст] / В.Ф. Тулинов, К.В. Тулинов. М.: Издательско-торговая корпорация «Дашков и К», 2014. 484 с.

2. Практические задания (задачи, тесты)

2.1. Методические указания к решению задач по теме «Генетика и эволюция»

1. Запишите условие задачи в виде символов.

Вначале записывают, что дано (признаки родительских форм) и что требуется определить (признаки потомков):

Родительские организмы обозначаются латинской буквой Р (perenta), на первом месте принято ставить женский пол — $\$ (зеркало Венеры), на втором — мужской $\$ (щит и копьё Марса).

Потомство от скрещивания (гибриды) обозначают буквой F (filie), цифрой в индексе обозначают порядок поколения, например: F_1 , F_2 .

Доминантный признак обозначают произвольно (если не даётся определённое обозначение признака в условии задачи) любой заглавной буквой латинского алфавита, а рецессивный признак (аллельный) — той же строчной буквой, например: А и а, В и b, С и с, D и d, L и l и т.д.

2. Определите тип задачи.

Необходимо выяснить, сколько пар генов кодируют эти признаки, число фенотипических классов в потомстве и их количественное соотношение. Кроме этого, следует учитывать, связано ли наследование признака с половыми хромосомами, специальное оно или независимое, а также какие гены взаимодействуют при наследовании — аллельные или неаллельные.

3. Решать генетическую задачу необходимо в определённой последовательности:

Сначала составляют цитологическую схему скрещивания родительских форм (указывают фенотипы), их гаметы, а затем решётку Пеннета для расчёта возможных типов зигот (потомков) и их фенотипы.

При записи гамет необходимо помнить, что:

- каждая гамета получает гаплоидный (одинарный) набор хромосом (генов);
 - все гены имеются в гаметах;
- в каждую гамету попадает только одна гомологическая хромосома из каждой пары, то есть только один ген каждой аллели;
- потомок получает одну гомологичную хромосому (один аллельный ген) от отца, а другой аллельный ген от матери;
- гетерозиготные организмы при полном доминировании всегда проявляют доминантный признак, а организмы с рецессивным признаком всегда гомозиготны.

В решётке Пеннета по горизонтали располагают женские гаметы, а по вертикали – мужские. В ячейки решётки вписывают образующиеся сочетания гамет – зиготы. Затем записывают фенотипы потомства.

4. Объясните решение задачи.

Необходимо указать, по каким законам и принципам происходит наследование признаков.

5. *3anuuume omeem.*

В ответе необходимо ответить на все вопросы, поставленные в задаче.

Законы наследственности

В основе реализуемого фенотипа – совокупности внешних и внутренних признаков – лежат молекулярные процессы.

Наличие значительного сходства между родственниками общеизвестно и не вызывает удивления, так как является следствием аналогичной на-

следственной информации. Для объяснения различий между индивидуумами – родственниками можно указать несколько основных причин:

- 1) свободная комбинаторика генов при образовании половых клеток;
- 2) случайные ситуации при слиянии гамет, т. е. отсутствие избирательности;
- 3) изменение сочетаний генов при гаметогенезе вследствие *кроссинговера перекреста гомологичных хромосом, сопровождающегося обменом участками* и т. д.

Отсюда следует вывод о неповторимой индивидуальности каждого при одновременном огромном сходстве в главном, т. е. в видовой специфике. В эту общую схему у одноплодных видов, к которым относится и человек, не вписываются лишь монозиготные (однояйцевые) близнецы, происходящие из одной яйцеклетки и характеризующиеся полным генотипическим и фенотипическим сходством. При необходимости на таких индивидах, в отличие от обычных родственников, можно успешно осуществлять операции по пересадке органов и тканей. При этом трансплантанты успешно приживаются, что свидетельствует о генотипическом сходстве. Полная гомозиготность, т. е. объединение одинаковых генов из разных половых клеток, легко достигается у растений-самоопылителей, а также у животных, способных к самооплодотворению (виды — гермафродиты).

Однако подавляющее большинство представителей любого вида характеризуется гетерогенностью (гетерозиготностью), получая разные наследственные задатки от не состоящих в близком родстве предков. Некоторые закономерности наследования признаков известны со второй половины XIX в. (Мендель, 1866), дополняющие их вариации выявляются постоянно, в том числе и в настоящее время.

В учебных целях более удобен и нагляден анализ качественных признаков. Любому признаку соответствует не менее пары аллелей — генов, находящихся в одинаковых точках гомологичных хромосом. Все аллели, или аллельные гены представляют собой результат точковых (генных) мутаций. Поскольку диплоидный набор хромосом — следствие объединения двух гаплоидных клеток, то в половой (гамете) и в телесной (соматической) клетках всегда присутствуют соответственно один и два аллеля (правило частоты гамет).

Доминантность – подавление одним аллелем проявления другого (рецессивного) из пары генов. Для доминантных и рецессивных генов приняты обозначения прописными (A) и строчными (a) буквами соответственно. Рецессивный ген не экспрессируется в присутствии доминантного аллеля. Отсюда при полном доминировании по любому изолированному признаку возможны три генотипа (AA, Aa, aa) и два фенотипа (например: карие глаза и голубые глаза). Первое правило Γ . Менделя — *закон единообразия гибридов первого по-коления* — потомство доминантных и рецессивных гомозигот единообразно и фенотипически неотличимо от гомозиготного по доминантному гену предка.

А – праворукость; а – леворукость

Набор хромосом	2 n		2n
Р (родители)	🖁 🗚 (правша)	×	
Гаметы (половые			
клетки – 1n)	\mathbf{A}		a
F ₁ (потомки)		Аа правши	

Этот закон – следствие образования гамет одного типа каждым из гомозиготных предков.

Второе правило Γ . Менделя – закон расщепления по фенотипу во втором поколении в соотношении 3:1 в пользу особей с доминантным признаком. В данном случае осуществляется воспроизводство гетерозиготных особей, образующих по два разных типа гамет в равном соотношении..

Набор хромосом	2n			2n
P	♀ Aa		×	♂ Aa
Гаметы	A a			A a
F_1	AA; Aa; Aa; aa		aa	
Фенотип		3 правши	; 1 левша	

Третье правило Γ . Менделя — закон независимого (дискретного) наследования: во втором поколении потомков расщепление по одному признаку происходит независимо от расщепления по другому. Этот факт — следствие нахождения генов различных признаков в разных парах хромосом.

А – праворукость; а – леворукость

В – волнистые волосы; b – прямые волосы

Набор хромосом	2 n		2n
Р (родители)	$ \mathcal{P}$ AA BB	×	♂ aa bb
Гаметы (половые			
клетки – 1n)	AB		ab
		Aa Bb	
		Все праворукие с	
F_1 (потомки)		волнистыми волоса-	
		ми (первый закон)	
Набор хромосом	2 n		2n
Родители	♀ Aa Bb	×	♂ Aa Bb

Дигетерозиготные особи образуют по четыре типа гамет (AB, Ab, aB, ab) в равном соотношении. Если число типов гамет превышает два, то для анализа потомков уместно использовать решетку Пиннета (\mathbf{F}_2).

	AB	Ab	aB	ab
AB	AA BB	AA Bb	AaBB	Aa Bb
Ab	AA Bb	AA bb	Aa Bb	Aa bb
aB	Aa BB	Aa Bb	aa BB	aa Bb
ab	Aa Bb	Aa bb	aa Bb	aa bb

Результаты F_2 : А...В... – 9 (прав, волн.) А...bb – 3 (прав, прям.) ааВ... – 3 (лев. волн.) ааbb – 1 (лев. прям.)

Анализируя $\mathbf{F_2}$, легко обнаружить, что при подсчете вариантов расщепления по одному признаку получаем 12:4, т. е. уже известное из второго закона соотношение 3:1. Таким образом, дигибридное скрещивание можно представить в виде двух моногибридных:

$$(3A... + 1aa)(3B... + 1bb) = 9A...B... + 3A...bb + 3aaB... + 1aabb.$$

К настоящему времени выявлены многочисленные формы взаимодействия аллельных и неаллельных (локализованных в разных парах хромосом) генов. Все эти ситуации не опровергают менделевских закономерностей, но дополняют их. При взаимодействии генов чаще наблюдают отклонения в числе фенотипов и, как следствие, в их соотношении. Реже выявляют случаи нежизнеспособности определенных генотипов, что приводит к изменению их количества, а также к новым соотношениям фенотипов.

Наследование пола и сцепленных с полом признаков. Нормальная и патологическая наследственность человека

Пол – совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится к *оплодотворению*, *т. е. слиянию мужских и женских гамет в зиготу*.

В соответствии с хромосомной теорией определения пола, мужские и женские организмы различаются между собой только одной парой хромосом, которая у одного пола представлена *гомологичными* (**xx**), а у другого – *негомологичными хромосомами* (**xy**). Различающуюся пару называют *половыми хромосомами*, а все остальные хромосомы – *аутосомами*.

У млекопитающих и человека особи женского пола имеют пару гомологичных половых хромосом, названных \mathbf{X} -хромосомами. Особи мужского пола имеют одну \mathbf{X} -хромосому и вторую — \mathbf{Y} -хромосому.

Наследование пола может быть представлено в виде обычной генетической схемы:

F_1	XX – 50 % девочки		XY –	50 % маль	чики
Гаметы	X			X	У
Родители	♀ XX ×		♂ XY		
Набор хромосом	2n			2n	

Половые хромосомы определяют не только пол организма, в них локализованы гены некоторых признаков. *Признаки, гены которых находятся в половых хромосомах, называются сцепленными с полом.* Наследование таких признаков не подчиняется закономерностям, установленным Г. Менделем. Этот факт — следствие специфической мужской У-хромосомы. Она сравнительно невелика и чрезвычайно обеднена генами. Кодирующая способность ДНК У-хромосомы достаточна для нескольких тысяч генов, однако реальных известно менее двадцати. Таким образом, У-хромосома генетически инертна, т. е. не содержит генов.

Для женского пола возможны следующие генотипы:

XAXA; XAXa; XaXa.

Причем, последний генотип **XaXa**, встречается весьма редко, обычно в потомстве особей, состоящих в родстве.

Для мужского организма возможны лишь варианты:

ХАУ; ХаУ.

Весьма часто рецессивный ген, локализованный в X-хромосоме — причина серьезных наследственных аномалий, от которых страдает преимущественно мужской пол.

2.2. Примеры решения задач

Пример 1. Карий цвет глаз у человека — доминантный признак, голубой — рецессивный. Голубоглазый мужчина женился на кареглазой женщине, у отца которой глаза были голубыми. Какой цвет глаз возможен у детей?

Решение

А – карие; а – голубые глаза.

Голубоглазый мужчина может быть только гомозиготным по рецессивному гену, так как этот аллель не экспрессируется (не проявляется) в присутствии доминантного, т. е. мужской — aa. Кареглазая женщина имеет голубоглазого предка, т. е. она гетерозиготна — Aa.

Составляем цитологическую схему скрещивания родительских форм (указываем фенотипы), их гаметы,

Набор хромосом	2 n				2n
Р (родители)	♀ Aa (кареглазые)			×	👌 аа (голубоглазый)
Гаметы (половые					
клетки – 1n)	A	a			a
F_1 (потомки)	50 % кареглазые А		a	50 %	6 голубоглазые аа

От такого брака равновероятно рождение кареглазых и голубоглазых потомков.

Пример 2. Дальтонизм (цветовая слепота) наследуется как рецессивный признак, сцепленный с полом. Гетерозиготная женщина с нормальным цветовосприятием вышла замуж за мужчину такого же фенотипа. От этого брака родилось четверо детей, в том числе два мальчика. Определите, сколько детей имело нормальное зрение.

Решение

А – нормальное цветовосприятие; а – дальтонизм. Все девочки фенотипически здоровы, однако половина из них гетерозиготны, как и мать; среди мальчиков расщепление 1:1, т. е. половина дальтоников.

2.3. Задачи для решения на практическом занятии

- 1. В семье родился голубоглазый темноволосый ребенок, похожий по этим признакам на отца. Мать ребенка кареглазая, темноволосая; бабушка по материнской линии голубоглазая темноволосая; дедушка кареглазый светловолосый; бабушка и дедушка по отцовской линии кареглазые, темноволосые. Определите вероятность рождения в этой семье голубоглазого светловолосого ребенка. Карий цвет глаз доминирует над голубым, темный цвет волос над светлым.
- 2. Во многих случаях гены из разных пар хромосом (неаллельные) обусловливают развитие одного признака. Широко известным примером является полимерия однозначное действие неаллельных генов. У человека подобным образом наследуется цвет кожи, обусловленный двумя парами генов, находящимися в негомологичных хромосомах. Если все гены доминантные, то кожа черная (негры), при всех рецессивных белая (европейцы). При наличии в генотипе трех, двух и одного доминантных генов кожа соответственно темная (темные мулаты), смуглая (мулаты) и светлая

(квартероны). Определите число и соотношение фенотипов у детей-потомков дигетерозиготных родителей-мулатов.

- **3.** У кошек ген черной окраски шерсти доминирует над геном рыжей окраски, а ген короткой шерсти доминирует над геном длинной шерсти. Каковы генотипы и фенотипы котят при скрещивании кошки с черной короткой шерстью и рыжего длинношерстного кота?
- **4.** Гетерозиготная женщина с нормальной свертываемостью крови вышла замуж за мужчину-гемофилика. Определите вероятность рождения в этой семье здоровых детей.
- **5.** Гипертрихоз (вырастание волос по краю ушной раковины) один из немногочисленных признаков, наследующихся через **У**-хромосому, который проявляется лишь к 17 годам жизни (**X**-хромосома лишена подобного гена). Какими могут быть генотипы и фенотипы детей в семье, где отец имел гипертрихоз?
- **6.** Гипоплазия эмали зубов (резкое истончение эмали, сопровождающееся потемнением зубов) наследуется как сцепленный с полом признак. В семье, где этот эффект проявлялся лишь у отца, родилось шесть детей, причем все три дочери унаследовали гипоплазию, все три сына были нормальными. Определите доминирование и генотипы всех членов семьи.

2.4. Примеры выполнения тестов

Пример 1.

Тема: Генетика и эволюция.

Установите соответствие между генотипами и их проявлением в фенотипе:

- 1) AA, Aa
- 2) AA, aa
- а) два генотипа по одному признаку, одинаково проявляющиеся в фенотипе;
- б) два генотипа по одному признаку, по-разному проявляющиеся в фенотипе:
- в) два генотипа по двум разным признакам, по-разному проявляющиеся в фенотипе.

Решение:

Аллельные гены определяют развитие разных вариантов одного и того же признака, обозначаются одной и той же буквой латинского алфавита — прописной буквой, если ген является доминантным, и строчной, если ген рецессивный. Два генотипа — AA, Aa — одинаково проявляются в фенотипе, поскольку в гетерозиготе Аа проявляется признак доминантного гена. Два генотипа по одному и тому же признаку — AA, аа — по-разному проявляют-

ся в фенотипе, поскольку рецессивный ген проявляет себя в гомозиготном состоянии аа.

Пример 2.

Тема: Генетика и эволюция.

Установите соответствие между свойством генетического материала и проявлением этого свойства:

- 1) линейность;
- 2) дискретность.
- а) гены расположены в хромосомах в определенной последовательности:
- б) ген определяет возможность развития отдельного качества данного организма;
- в) наследственный материал обладает способностью к самовоспроизведению.

Решение:

Линейность генетического материала проявляется в том, что гены расположены в хромосомах в определенной последовательности, а именно в линейном порядке. Ген определяет возможность развития отдельного качества данного организма, что характеризует дискретность его действия.

2.5. Тесты для выполнения на практическом занятии

1. Факты, доказывающие реальное существование генов:

Варианты ответов. Количество правильных ответов – 1

- 1) замена гена приводит к появлению нового признака;
- 2) относительная стабильность признаков и свойств организмов одного вида;
- 3) влияние факторов внешней среды на генотип;
- 4) способность гена изменяться (мутировать).
- **2.** Совокупность генов, содержащихся в одинарном наборе хромосом животной или растительной клетки, носит название ...

Варианты ответов. Количество правильных ответов – 1

- геном;
- 2) генотип;
- 3) генофонд;
- 4) ген.
- **3.** Совокупность всех генов организма, локализованных в его хромосомах, это...

Варианты ответов. Количество правильных ответов – 1

1) генотип;

- 2) фенотип;
- 3) генофонд;
- 4) кариотип.
- **4.** Совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития, — это ...

- 1) фенотип;
- 2) генофонд;
- 3) геном;
- 4) кариотип.
- **5.** Аллельные гены (от греческого «аллос» другой) пара генов, определяющих ...

Варианты ответов. Количество правильных ответов – 1

- 1) альтернативные варианты одного и того же признака;
- 2) однотипные признаки;
- 3) одинаковые признаки;
- 4) тождественные признаки.
- **6.** Организм, генотип которого содержит одинаковые аллели одного гена, называется...

Варианты ответов. Количество правильных ответов – 1

- 1) гомозиготным;
- 2) доминантным;
- 3) гетерозиготным;
- 4) рецессивным.
- **7.** Организм, генотип которого содержит разные аллели одного гена, называется ...

Варианты ответов. Количество правильных ответов – 1

- 1) гетерозиготным;
- 2) гомозиготным;
- 3) рецессивным;
- 4) доминантным.
- **8.** Высказывание: «Рецессивный аллель влияет на фенотип, только если генотип гомозиготен» означает:

- а) генотип содержит два рецессивных аллеля, обусловливающих данный признак;
 - б) признак, обусловленный этими аллелями, будет выражен в фенотипе;

- в) генотип содержит рецессивный и доминантный аллели;
- г) в фенотипе признак, обусловленный этими аллелями, не проявляется.
- 1) a, 6; 2) 6, B; 3) $8, \Gamma;$ 4) $a, \Gamma.$
- 9. Причиной единообразия гибридов первого поколения является ...

- 1) гетерозиготность обоих родителей;
- 2) гомозиготность обоих родителей;
- 3) гетерозиготность одного из родителей;
- 4) гомозиготность одного из родителей.
- **10.** Число хромосом в диплоидном наборе клетки один из важнейших видовых признаков. У человека число хромосом:

Варианты ответов. Количество правильных ответов – 1

- 1)8;
- 2) 100;
- 3)46;
- 4)23.
- 11. Скрещивание организмов, которые анализируются по аллелям одного гена, т.е. отличаются по одной паре признаков, называется ...

Варианты ответов. Количество правильных ответов – 1

- 1) дигибридным;
- 2) тетрагибридным;
- 3) полигибридным;
- 4) моногибридным.
- 12. При развитии зиготы пол человека предопределяется:

Варианты ответов. Количество правильных ответов – 1

- 1) наличием или отсутствием Y-половой хромосомы;
- 2) соотношением числа Х- и У-половых хромосом;
- 3) соотношением числа X-хромосом и аутосом;
- 4) наличием или отсутствием Х-половой хромосомы.
- **13.** Различия по фенотипу у особей с одинаковым генотипом свидетельствуют о возникновении у них изменчивости— ...

- 1) модификационной;
- 2) мутационной;
- 3) комбинативной;
- 4) соотносительной.

	14. B наборе генотипов $-AA$, Aa , aa , npu полном доминировании число
þе	нотипов равно
	Варианты ответов. Количество правильных ответов – 1
	1) четырём;
	2) одному;
	3) трём;
	4) двум.
	15. Изменение структуры хромосом, затрагивающее несколько генов,
наз	вывается мутацией.
	Варианты ответов. Количество правильных ответов – 1
	1) геномной;
	2) генной;
	3) генотипной;
	4) хромосомной.
	16. Количественное изменение набора хромосом за счет утраты или
VМ	ножения отдельных хромосом называется мутацией.
	Варианты ответов. Количество правильных ответов – 1
	1) генной;
	2) фенотипной;
	3) геномной;
	4) хромосомной.
	17. Значение мутационной изменчивости для эволюции в том, что
ЭНС	a
	Варианты ответов. Количество правильных ответов – 1
	1) передается по наследству;
	2) не передается по наследству;
	3) возникает сразу у большого числа особей;
	4) возникает только у мужских особей.
	18. Фенотип – это:
	Варианты ответов. Количество правильных ответов – 1
	1) совокупность внешних и внутренних признаков;
	2) диплоидный набор хромосом, характерный для соматических клеток;
	3) совокупность всех генов;
	4) одинарный набор хромосом, характерный для соматических клеток.
	19. Кроссинговер – это:
	Варианты ответов. Количество правильных ответов – 1
	1) перекрест гомологичных хромосом и обмен генами:

- 2) перекрест негомологичных хромосом;
- 3) обмен генетической информацией с окружающей средой;
- 4) обмен половыми клетками.

20. Нечетное число типов гамет характерно для...

Варианты ответов. Количество правильных ответов – 1

- 1) гетерозиготных генотипов;
- 2) гомозиготных генотипов;
- 3) соматических клеток;
- 4) половых клеток.

21. Какой из генотипов при полном доминировании можно безошибочно определить по фенотипу?

Варианты ответов. Количество правильных ответов – 1

- 1) гетерозиготный генотип;
- 2) гомозиготный генотип по доминантному признаку;
- 3) гомозиготный генотип по рецессивному признаку;
- 4) синдром Дауна.

22. Укажите свойства мутаций:

Варианты ответов. Количество правильных ответов – 1

- 1) не передаются по наследству;
- 2) имеют приспособительный характер;
- 3) возникают внезапно, скачкообразно;
- 4) связаны с изменением генотипа.

23. Онтогенез организма определяется:

Варианты ответов. Количество правильных ответов – 1

- 1) генотипом организма и условиями среды;
- 2) условиями среды и генофондом популяции;
- 3) фенотипами родителей и условиями среды;
- 4) генофондом популяции и генотипом организма.

24. Популяционная генетика изучает:

- 1) взаимоотношения организмов в популяциях;
- 2) динамику генетического состава популяций;
- 3) факторы, влияющие на изменение генотипов;
- 4) взаимодействие организмов и среды.

Практическое занятие №9

Биосфера. Человек в биосфере

1. Семинар

Вопросы для обсуждения:

- 1. Биосферный уровень организации жизни.
- 2. Основы учения В.И. Вернадского о биосфере.
- 3. Распределение на Земле солнечной энергии.
- 4. Биотический круговорот
- 5. Концепции эволюции растительного и животного мира.
- 6. Человек качественно новая ступень развития биосферы.
- 7. Концепции коэволюции и ноосферы.
- 8. Естественнонаучная картина мира и общественная мысль.

Учение В.И. Вернадского о биосфере и ноосфере

Термин «биосфера» был введен австрийским геологом Э. Зюссом (1875 г.) для обозначения оболочки Земли, образованной совокупностью живых организмов. Это соответствовало исходной, сугубо биологической концепции биосферы.

В современном естествознании под биосферой понимают оболочку Земли, населенную и активно преображаемую живыми организмами. Биосфера включает нижние слои атмосферы, водную среду и верхнюю часть земной коры. Два главных компонента биосферы (живые организмы и среда их обитания) существуют в постоянном взаимодействии, образуя целостную многоуровневую систему.

Отдельные популяции живых организмов также не являются изолированными от окружения. В ходе эволюции образуются *биоценозы* — сообщества животных, растений, микроорганизмов. В совокупности со средой обитания биоценозы образуют *биогеоценозы*. В них происходит непрерывный обмен веществом и энергией, который реализуется множеством трофических цепочек и биогеохимических циклов. Биогеоценозы служат элементарными ячейками биосферы, которые, взаимодействуя между собой, устанавливают динамическое равновесие в ней. Живое вещество выполняет системообразующую роль в суперсистеме жизни — биосфере.

Высокая степень согласованности всех видов жизни в биосфере – результат единой эволюции взаимодействующих биосистем – коэволюции. Коэволюция проявляется в тонкой взаимной приспособляемости видов, во взаимодополнении живых систем. В конечном счете, коэволюция приводит к увеличению разнообразия и сложности в природе. В этом представлении состоит суть концепции коэволюции. Согласно ей, многообразие живых организмов – это основа организации и устойчивости биосферы. Каждый

биологический вид выполняет свою функцию в биосферном циркулировании вещества, энергии, в обмене информацией и осуществлении обратных связей. В связи с этим очевидна опасность уменьшения численности видов живых организмов и сокращения генофонда, которые непрерывно происходят под все возрастающим давлением человеческой цивилизации на природу.

Глубокая, фундаментальная взаимосвязь компонентов биосферы делает ее похожей на единый живой организм, который, родившись практически одновременно с Землей, непрерывно эволюционирует. Планетарные масштабы этой эволюционирующей системы и одновременно ее схожесть с живым организмом определяют место биосферы как особого уровня организации живой материи.

Основы целостного учения о биосфере заложены российским ученым геобиохимиком В. И. Вернадским в 1930-е гг. Изучив роль живой материи, прослеживающейся на всем протяжении ее эволюции, он пришел к выводу о неразрывной связи живых и неживых систем. В истории Земли происходил непрерывный процесс планетарной интеграции живой и неживой материи, приведший к образованию сложной единой, тонко сбалансированной системы – биосферы. В.И. Вернадский понимал биосферу как сферу единства живого и неживого. Этот вывод стал одним из основополагающих принципов его биосферной теории. Он показал, что все компоненты жизни на Земле представляют в совокупности мощный фактор, вовлекающий в круговорот неорганические вещества планеты, аккумулируя энергию солнечного излучения и преобразуя ее в энергию земных процессов. В.И. Вернадский сумел сделать фундаментальное эмпирическое обобщение: «На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем организмы, взятые в целом...». Специфический облик Земли как небесного тела фактически сформирован жизнью.

Таким образом, В.И. Вернадский придал концепции биосферы биогеохимический смысл. С его именем связано также формирование социальноэкономической концепции биосферы, предполагающей ее превращение на определенном этапе эволюции в *ноосферу*.

На ранних стадиях формирования человека его функциональная роль и значимость в биосфере ничем не отличались от роли приматов. Но за последние века «человеческий фактор» в эволюции биосферы непрестанно возрастал. Человек вносит принципиально новые элементы во взаимодействие с природой. Он выступает как автономная целостность внутри биосферы, все более выходящая за рамки гармоничных отношений с ней.

Современная человеческая цивилизация характеризуется двумя противоположными тенденциями. С одной стороны, непрерывно усиливается техногенное давление цивилизации на природную среду, на биосферу. С

другой — возрастает осознание мировым сообществом ответственности за эволюцию биосферы. Какая из тенденций возобладает, предугадать невозможно. Однако проблема выживания человечества объективно приводит к поиску путей гармоничного сосуществования цивилизации и биосферы — коэволюции человека и биосферы.

Осмысление перспектив коэволюции человека и биосферы привело французского палеонтолога и философа П. Тейяра де Шардена к мысли о возможности появления в будущем некоего коллективного человеческого сознания, которое станет контролировать направление эволюции. Он рассматривал переход к этой эволюционной фазе как последовательный шаг в глобальном процессе эволюции Универсума. В новом состоянии биосфера переходит в сферу разумного взаимодействия человека и природы — ноосферу. Сам термин «ноосфера» предложен в 1927 г. другим французским ученым Э. Леруа и буквально означает «сфера разума».

В.И. Вернадский использовал понятие «ноосферы» при построении своей концепции совместной эволюции биосферы и человека. Переход к ноосфере для В.И. Вернадского означает реконструкцию биосферы в интересах человечества как единого целого. В этом смысле понятие ноосферы объясняет растущее вторжение человека в планетарные геохимические циклы. Сбалансированное сосуществование в ноосфере предполагает управление биогеохимическими циклами. Вернадский понимал ноосферу как биосферу на принципиально новом этапе ее эволюции, для которого станет характерным целенаправленное регулирование взаимосвязей человека и природы. С появлением и развитием человеческого общества в эволюции биосферы намечается переход от биогенеза, обусловленного факторами биологической эволюции, к ноогенезу — развитию под влиянием разумной созидательной деятельности человечества.

Таким образом, П. Тейяр де Шарден и В.И. Вернадский давали различающиеся интерпретации понятия ноосферы. Для первого ноосфера — некий «планетарный слой» сознания и духовности. Для второго ноосфера является гармонизирующимся состоянием системы «человек—биосфера» и одновременно средой самореализации человека. Он считал ноосферу исторически неизбежной формой биосферы, которую она примет в будущем.

2. Практические задания (задачи, тесты)

2.1. Примеры выполнения тестов

Тема: Биосфера.

Пример 1

Установите соответствие между утверждением об особенностях биогенной миграции атомов химических элементов и его характеристикой относительно верности или неверности:

а) эволюционируют виды, увеличивающие биогенную миграцию;

- б) биогенная миграция атомов стремится к минимальному проявлению;
- в) масса живого вещества остается постоянной на протяжении геологических периодов.
 - 1) верное утверждение об особенностях биогенной миграции;
 - 2) неверное утверждение об особенностях биогенной миграции;
 - 3) не является принципом биогенной миграции;
 - 4) может быть верным и неверным в зависимости от условий.

Решение:

Эволюционируют виды, увеличивающие биогенную миграцию, — это один из биогеохимических принципов миграции атомов химических элементов. Другой принцип утверждает, что биогенная миграция атомов стремится к максимальному проявлению, поэтому утверждение о том, что биогенная миграция атомов стремится к минимальному проявлению, является неверным. Масса живого вещества остается постоянной на протяжении геологических периодов — это системное свойство биосферы, которое не является принципом биогенной миграции.

Тема: Человек в биосфере.

Пример 2.

Качественное отличие человека от животных, в том числе и от наиболее близких к нему человекообразных обезьян, определяется, прежде всего ...

Варианты ответов. Количество правильных ответов – 1

- 1) социальной сущностью человека;
- 2) увеличением массы мозга относительно массы тела;
- 3) развитием объемно-пространственного восприятия;
- 4) развитием высшей нервной деятельности.

Решение:

Качественное отличие человека от животных, в том числе и от наиболее близких к нему человекообразных обезьян, определяется, прежде всего, социальной сущностью человека, обеспечивающей ему экологическое превосходство над всеми живыми существами, способность заселить практически все регионы Земного шара, и даже преобразовать биосферу. Широкое расселение человечества по Земному шару, все возрастающее влияние антропогенного фактора на природу нарушило экологическое равновесие, но одновременно способствовало исключительному разнообразию биологической организации человека.

ТЕСТ. Биосфера. Человек в биосфере

1. Биосфера – это сфера жизни, которая охватывает:

Варианты ответов. Количество правильных ответов – 1

- 1) верхнюю часть литосферы, ионосферу, гидросферу;
- 2) магнитосферу, литосферу, атмосферу;
- 3) нижнюю часть атмосферы, гидросферу, верхнюю часть литосферы;
- 4) гидросферу, магнитосферу, литосферу.
- 2. Первичным источником энергии для биосферы является...

Варианты ответов. Количество правильных ответов – 1

- 1) тепловая энергия недр Земли;
- 2) разложение и окисление органических веществ;
- 3) солнечная энергия;
- 4) круговорот веществ в биосфере.
- 3. Движущей силой потоков вещества и энергии в биосфере является ...

Варианты ответов. Количество правильных ответов – 1

- 1) энергия высокомолекулярные органических соединений;
- 2) естественная радиоактивность и электромагнитное поле Земли;
- 3) деятельность продуцентов;
- 4) излучение Солнца.
- 4. Главным фактором эволюции биосферы является ...

Варианты ответов. Количество правильных ответов – 1

- 1) энтальпия;
- 2) энергия;
- 3) экология;
- 4) экономика.
- **5.** Вещество биосферы делится на живое, косное, биокосное и биогенное. К косному веществу биосферы относятся...

Варианты ответов. Количество правильных ответов – 1

- 1) растения, животные;
- 2) почвы, илы;
- 3) известняки, доломиты;
- 4) породы магматического происхождения.
- **6.** Одним из элементов биосферы, по В.И. Вернадскому является биогенное вещество. Это ...

Варианты ответов. Количество правильных ответов – 1

1) вещество, созданное в процессе жизнедеятельности организмов (уголь, нефть и т.д.);

- 2) вещество космического происхождения;
- 3) вещество, возникающее при совместном действии организмов и абиогенных процессов;
 - 4) радиоактивное вещество.
- 7. Важнейшим отличием живого вещества от косной материи В.И. Вернадский считал...

Варианты ответов. Количество правильных ответов – 1

- 1) изменчивость во времени;
- 2) молекулярную хиральность;
- 3) передвижение в пространстве;
- 4) изменение размеров тела во времени.
- **8.** Вещество биосферы, происхождение которого связано с жизнедеятельностью организмов (уголь, природный газ, известняки), называется ...

Варианты ответов. Количество правильных ответов – 1

- 1) живым;
- 2) биокосным;
- 3) косным;
- 4) биогенным.
- **9.** Какая функция живого вещества проявляется в процессе образования залежей горючих ископаемых, известняков, руды...

Варианты ответов. Количество правильных ответов – 1

- 1) деструктивная;
- 2) средообразующая;
- 3) энергетическая;
- 4) газовая.
- **10.** Газовая функция живого вещества в биосфере обусловлена способностью организмов...

Варианты ответов. Количество правильных ответов – 1

- 1) поглощать и выделять кислород, углекислый газ;
- 2) накапливать различные вещества;
- 3) осуществлять сложные превращения веществ в живых телах;
- 4) выделять химические вещества.
- **11.** Функция живого вещества, связанная с минерализацией органических и неорганических веществ и вовлечением их в биологический круговорот, называется...

Варианты ответов. Количество правильных ответов – 1

1) средообразующей;

- 2) транспортной;
- 3) концентрационной;
- 4) деструктивной.
- **12.** Функция живого вещества, проявляющаяся при поглощении бактериями азота, называется...

Варианты ответов. Количество правильных ответов – 1

- 1) деструктивной;
- 2) энергетической;
- 3) транспортной;
- 4) газовой.
- **13.** Функция живого вещества, которая проявляется в способности хвощей, осок накапливать в клетках кремний, называется ...

Варианты ответов. Количество правильных ответов – 1

- 1) деструктивной;
- 2) концентрационной;
- 3) газовой;
- 4) окислительно-восстановительной.
- **14.** Окислительно-восстановительная функция живого вещества биосферы проявляется в...

Варианты ответов. Количество правильных ответов – 1

- 1) процессе денитрификации;
- 2) выделении кислорода при фотосинтезе;
- 3) накоплении железобактериями железа;
- 4) аккумуляции солнечной энергии при фотосинтезе.
- 15. Основные черты эволюции биосферы Земли:

Варианты ответов. Количество правильных ответов – 1

- 1) уменьшение биомассы в течение геологического периода;
- 2) общее усложнение экосистем и возрастание суммы жизни;
- 3) изменение основ биохимических процессов в организмах;
- 4) нарастание биоразнообразия.
- 16. Видовой состав биосферы в процессе эволюции...

- 1) увеличивается;
- 2) не изменяется;
- 3) уменьшается;
- 4) изменяется периодически.

17. С точки зрения синергетики эволюция биосферы прошла через три фундаментальные точки бифуркации: появление Разума, зарождение техногенной цивилизации, первая точка бифуркации – это ...

Варианты ответов. Количество правильных ответов – 1

- 1) появление живого из неживого;
- 2) появление гетеротрофов;
- 3) зарождение эукариотов;
- 4) возникновение развитой нервной системы.
- **18.** С точки зрения синергетики эволюция биосферы прошла через три фундаментальные точки бифуркации: 1) появлении живого из неживого; 2) появление Разума; третья точка бифуркации это ...

Варианты ответов. Количество правильных ответов – 1

- 1) зарождение техногенной цивилизации;
- 2) появление гетеротрофов;
- 3) зарождение эукариотов;
- 4) возникновение развитой нервной системы.
- **19.** Согласно биохимическому принципу В.И. Вернадского в процессе эволюции появляются виды, которые...

Варианты ответов. Количество правильных ответов – 1

- 1) влияют избирательно на миграцию атомов;
- 2) увеличивают биогенную миграцию атомов;
- 3) не влияют на скорость миграции атомов;
- 4) уменьшают биогенную миграцию атомов.
- **20.** Согласно биохимическому принципу В.И. Вернадского, в процессе эволюции биосферы скорость биогенной миграции атомов ...

Варианты ответов. Количество правильных ответов – 1

- 1) стремится к максимуму;
- 2) уменьшается;
- 3) не изменяется;
- 4) изменяется периодически.
- 21. Ноосфера в представлении В.И. Вернадского:

- 1) гармонизирующее состояние системы «человек биосфера»;
- 2) «планетарный слой» сознания и духовности;
- 3) среда самоорганизации человека;
- 4) сфера господства человека над Природой.

22. Важное отличие человека от животных – это ...

Варианты ответов. Количество правильных ответов – 1

- 1) развитие зародышей;
- 2) внутриутробное развитие плода;
- 3) высокое развитие инстинктов;
- 4) высокое развитие рассудочной деятельности.
- 23. Предшественниками Рода Человек считаются ...

Варианты ответов. Количество правильных ответов – 1

- 1) неоантропы;
- 2) палеоантропы;
- 3) австралопитеки;
- 4) архантропы.
- **24.** Примитивные галечные орудия труда изготавливались представителями...

Варианты ответов. Количество правильных ответов – 1

- 1) человека прямоходящего;
- 2) человека разумного;
- 3) человека умелого;
- 4) неоантропов.
- **25.** Процессу становления человека разумного (Homo sapiens) присущи особенности эволюционного развития всего органического мира:

Варианты ответов. Количество правильных ответов – 1

- 1) обратимость эволюционных преобразований;
- 2) прогрессивная направленность развития;
- 3) происходит на разных уровнях от молекулярного до биосферного;
- 4) целесообразность эволюционных изменений.
- 26. Современные человекообразные обезьяны...

Варианты ответов. Количество правильных ответов – 1

- 1) приобрели прямохождение позже человека;
- 2) не умеют управлять каждым пальцем руки, как человек;
- 3) имеют с человеком общего предка жившего 18 20 млн. лет назад;
- 4) являются предками человека.
- **27.** С возникновением человека как социального существа эволюционные факторы постепенно ослабляют свое воздействие, за исключением...

- 1) изоляции;
- 2) стабилизирующего отбора;

- 3) мутационного процесса;
- 4) популяционных волн.
- **28.** Доказательствами того, что представители разных человеческих рас относятся к одному и тому же биологическому виду человек разумный, являются:

Варианты ответов. Количество правильных ответов – 2

- 1) приспособительный характер отличительных признаков для каждой из рас;
 - 2) неограниченная способность к скрещиванию людей разных рас;
 - 3) единство фенотипа представителей всех рас;
- 4) организованность в высокоразвитую социальную структуру человеческое общество.
- **29.** Социально-культурная эволюция человека отличается от биологической эволюции тем, что...

- 1) социально-культурная эволюция наследуется целенаправленно через обучение;
- 2) знания, идеи, технологии распространяются по всей популяции быстрее, чем генетическая информация;
 - 3) социально-культурная эволюция связана с биологической эволюцией;
- 4) в процессе развития человека влияние биологической эволюции возрастает, а социально-культурной уменьшается.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Карпенков, С.Х. Концепции современного естествознания [Текст] / С.Х. Карпенков. М.: Директ-Медиа, 2014. 447 с.
- 2. Разумов, В.А. Концепции современного естествознания [Текст] / В.А. Разумов. М.: НИЦ ИНФРА-М, 2015. 352 с.
- 3. Брызгалина, Е. В. Концепции современного естествознания [Текст] / Е. В. Брызгалина. М:. Проспект, 2015. 496 с.
- 4. Михайлов, Л.А. Концепции современного естествознания [Текст] / Л.А. Михайлов. СПб.: Питер, 2012. 336 с.
- 5. Исаков, А.Я. Основы современного естествознания [Текст] / А.Я. Исаков. Петропавловск-Камчатский: КамчатГТУ, 2012. 274 с.
- 6. Романов, Л.А. Концепции современного естествознания. Практикум [Текст] / Л.А. Романов. М:. Вузовский учебник: НИЦ ИНФРА-М, 2015. $128~\rm c.$
- 7. Стрельник, О.Н. Концепции современного естествознания [Текст] / О.Н. Стрельник. М:. Юрайт, 2011. 223 с.

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	3
ВВЕДЕНИЕ	4
Практическое занятие №1	5
Практическое занятие №2	18
Практическое занятие №3	29
Практическое занятие №4	43
Практическое занятие №5	51
Практическое занятие №6	62
Практическое занятие №7	78
Практическое занятие №8	95
Практическое занятие №9	108
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	118

Учебное издание

Очкина Наталья Александровна

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Учебно-методическое пособие для практических занятий по направлению подготовки 38.03.03 «Управление персоналом»

Под общ. ред. Г.И. Грейсуха

В авторской редакции Верстка Н.А. Сазонова

Подписано в печать 29.03.16. Формат 60×84/16. Бумага офисная «Снегурочка». Печать на ризографе. Усл. печ. л. 7,0. Уч.-изд. л. 7,5. Тираж 80 экз. Заказ №276.

Издательство ПГУАС. 440028, г.Пенза, ул. Германа Титова, 28.